Journal of High Energy Physics

, 2010:125 | Cite as

Five-dimensional AGT conjecture and the deformed Virasoro algebra

  • Hidetoshi AwataEmail author
  • Yasuhiko Yamada


We study an analog of the AGT (Alday-Gaiotto-Tachikawa) relation in five dimensions. We conjecture that the instanton partition function of 5D \( \mathcal{N} = 1 \) pure SU(2) gauge theory coincides with the inner product of the Gaiotto-like state in the deformed Virasoro algebra. In four-dimensional case, a relation between the Gaiotto construction and the theory of Braverman and Etingof is also discussed.


Quantum Groups Field Theories in Higher Dimensions Conformal Field Models in String Theory Topological Strings 


  1. [1]
    L.F. Alday, D. Gaiotto and Y. Tachikawa, Liouville Correlation Functions from Four-dimensional Gauge Theories, arXiv:0906.3219 [SPIRES].
  2. [2]
    D. Gaiotto, Asymptotically free N = 2 theories and irregular conformal blocks, arXiv:0908.0307 [SPIRES].
  3. [3]
    A. Marshakov, A. Mironov and A. Morozov, On non-conformal limit of the AGT relations, Phys. Lett. B 682 (2009) 125 [arXiv:0909.2052] [SPIRES].Google Scholar
  4. [4]
    N. Wyllard, A N−1 conformal Toda field theory correlation functions from conformal N = 2 SU(N) quiver gauge theories, JHEP 11 (2009) 002 [arXiv:0907.2189] [SPIRES].CrossRefGoogle Scholar
  5. [5]
    A. Mironov and A. Morozov, On AGT relation in the case of U(3), Nucl. Phys. B 825 (2010) 1 [arXiv:0908.2569] [SPIRES].CrossRefGoogle Scholar
  6. [6]
    G. Bonelli and A. Tanzini, Hitchin systems, N = 2 gauge theories and W-gravity, arXiv:0909.4031 [SPIRES].
  7. [7]
    L.F. Alday, F. Benini and Y. Tachikawa, Liouville/Toda central charges from M5-branes, arXiv:0909.4776 [SPIRES].
  8. [8]
    R. Dijkgraaf and C. Vafa, Toda Theories, Matrix Models, Topological Strings and N = 2 Gauge Systems, arXiv:0909.2453 [SPIRES].
  9. [9]
    A. Mironov and A. Morozov, Proving AGT relations in the large-c limit, Phys. Lett. B 682 (2009) 118 [arXiv:0909.3531] [SPIRES].Google Scholar
  10. [10]
    R. Poghossian, Recursion relations in CFT and N = 2 SYM theory, JHEP 12 (2009) 038 [arXiv:0909.3412] [SPIRES].CrossRefGoogle Scholar
  11. [11]
    N. Drukker, D.R. Morrison and T. Okuda, Loop operators and S-duality from curves on Riemann surfaces, JHEP 09 (2009) 031 [arXiv:0907.2593] [SPIRES].CrossRefGoogle Scholar
  12. [12]
    L.F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa and H. Verlinde, Loop and surface operators in N = 2 gauge theory and Liouville modular geometry, arXiv:0909.0945 [SPIRES].
  13. [13]
    N. Drukker, J. Gomis, T. Okuda and J. Teschner, Gauge Theory Loop Operators and Liouville Theory, arXiv:0909.1105 [SPIRES].
  14. [14]
    D. Gaiotto, G.W. Moore and A. Neitzke, Wall-crossing, Hitchin Systems and the WKB Approximation, arXiv:0907.3987 [SPIRES].
  15. [15]
    S. Cecotti and C. Vafa, BPS Wall Crossing and Topological Strings, arXiv:0910.2615 [SPIRES].
  16. [16]
    M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, arXiv:0811.2435.
  17. [17]
    K. Takasaki, Integrable structure of melting crystal model with two q-parameters, J. Geom. Phys. 59 (2009) 1244 [arXiv:0903.2607] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  18. [18]
    N.A. Nekrasov and S.L. Shatashvili, Quantization of Integrable Systems and Four Dimensional Gauge Theories, arXiv:0908.4052 [SPIRES].
  19. [19]
    N.A. Nekrasov, Seiberg-Witten Prepotential From Instanton Counting, Adv. Theor. Math. Phys. 7 (2004) 831 [hep-th/0206161] [SPIRES].MathSciNetGoogle Scholar
  20. [20]
    R. Flume and R. Poghossian, An algorithm for the microscopic evaluation of the coefficients of the Seiberg-Witten prepotential, Int. J. Mod. Phys. A 18 (2003) 2541 [hep-th/0208176] [SPIRES].MathSciNetADSGoogle Scholar
  21. [21]
    U. Bruzzo, F. Fucito, J.F. Morales and A. Tanzini, Multi-instanton calculus and equivariant cohomology, JHEP 05 (2003) 054 [hep-th/0211108] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    H. Nakajima and K. Yoshioka, Instanton counting on blowup. I. 4-dimensional pure gauge theory, Invent. Math. 162 (2005) 313 [math/0306198].zbMATHCrossRefMathSciNetADSGoogle Scholar
  23. [23]
    N. Nekrasov and A. Okounkov, Seiberg-Witten theory and random partitions, hep-th/0306238 [SPIRES].
  24. [24]
    H. Nakajima and K. Yoshioka, Instanton counting on blowup. II: K-theoretic partition function, Transform. Groups 10 (2005) 489 [math/0505553].zbMATHCrossRefMathSciNetGoogle Scholar
  25. [25]
    H. Awata and H. Kanno, Instanton counting, Macdonald functions and the moduli space of D-branes, JHEP 05 (2005) 039 [hep-th/0502061] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  26. [26]
    A. Iqbal, C. Kozcaz and C. Vafa, The refined topological vertex, JHEP 10 (2009) 069 [hep-th/0701156] [SPIRES].CrossRefGoogle Scholar
  27. [27]
    H. Awata and H. Kanno, Refined BPS state counting from Nekrasov’s formula and Macdonald functions, Int. J. Mod. Phys. A 24 (2009) 2253 [arXiv:0805.0191] [SPIRES].MathSciNetADSGoogle Scholar
  28. [28]
    I.G. Macdonald, Symmetric functions and Hall polynomials, second edition, Oxford University Press, New York U.S.A. (1995).zbMATHGoogle Scholar
  29. [29]
    J. Shiraishi, H. Kubo, H. Awata and S. Odake, A Quantum deformation of the Virasoro algebra and the Macdonald symmetric functions, Lett. Math. Phys. 38 (1996) 33 [q-alg/9507034] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  30. [30]
    H. Awata, H. Kubo, S. Odake and J. Shiraishi, Virasoro-type symmetries in solvable models, in Proceedings of the Canada-China meeting on theoretical physics, L. Lapointe eds., Les Publications CRM, Montreal Canada (2003) hep-th/9612233 [SPIRES].Google Scholar
  31. [31]
    B. Feigin and E. Frenkel, Quantum W algebras and elliptic algebras, Commun. Math. Phys. 178 (1996) 653 [q-alg/9508009] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  32. [32]
    H. Awata, H. Kubo, S. Odake and J. Shiraishi, Quantum W(N) algebras and Macdonald polynomials, Commun. Math. Phys. 179 (1996) 401 [q-alg/9508011] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  33. [33]
    A. Gorsky and N. Nekrasov, Relativistic Calogero-Moser model as gauged WZW theory, Nucl. Phys. B 436 (1995) 582 [hep-th/9401017] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  34. [34]
    N. Nekrasov, Five dimensional gauge theories and relativistic integrable systems, Nucl. Phys. B 531 (1998) 323 [hep-th/9609219] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  35. [35]
    A. Braverman, Instanton counting via affine Lie algebras I: Equivariant J-functions of (affine) flag manifolds and Whittaker vectors, math/0401409.
  36. [36]
    A. Braverman and P. Etingof, Instanton counting via affine Lie algebras. II: From Whittaker vectors to the Seiberg-Witten prepotential, math/0409441.
  37. [37]
    P. Bouwknegt and K. Pilch, The deformed Virasoro algebra at roots of unity, Commun. Math. Phys. 196 (1998) 249 [q-alg/9710026].zbMATHCrossRefMathSciNetADSGoogle Scholar
  38. [38]
    T. Maeda, T. Nakatsu, K. Takasaki and T. Tamakoshi, Five-dimensional supersymmetric Yang-Mills theories and random plane partitions, JHEP 03 (2005) 056 [hep-th/0412327] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  39. [39]
    E. Carlsson, Vertex Operators and Moduli Spaces of Sheaves, arXiv:0906.1825 [SPIRES].
  40. [40]
    M. Jimbo, H. Nagoya and J. Sun, Remarks on the confluent KZ equation for sl 2 and quantum Painlevé equations, J. Phys. A: Math. Theor. 41 (2008) 175205.CrossRefMathSciNetADSGoogle Scholar
  41. [41]
    K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta and Y. Yamada, Cubic Pencils and Painlevé Hamiltonians, Funkcial. Ekvac. 48 (2005) 147, [nlin/0403009].zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Graduate School of MathematicsNagoya UniversityNagoyaJapan
  2. 2.Department of Mathematics, Faculty of ScienceKobe UniversityHyogoJapan

Personalised recommendations