Journal of High Energy Physics

, 2010:103 | Cite as

Minimal supersymmetric inverse seesaw: neutrino masses, lepton flavour violation and LHC phenomenology

  • M. HirschEmail author
  • T. Kernreiter
  • J. C. Romão
  • A. Villanova del Moral


We study neutrino masses in the framework of the supersymmetric inverse seesaw model. Different from the non-supersymmetric version a minimal realization with just one pair of singlets is sufficient to explain all neutrino data. We compute the neutrino mass matrix up to 1-loop order and show how neutrino data can be described in terms of the model parameters. We then calculate rates for lepton flavour violating (LFV) processes, such as μeγ, and chargino decays to singlet scalar neutrinos. The latter decays are potentially observable at the LHC and show a characteristic decay pattern dictated by the same parameters which generate the observed large neutrino angles.


Rare Decays Beyond Standard Model Neutrino Physics Supersymmetric Standard Model 


  1. [1]
    Super-Kamiokande collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    SNO collaboration, Q.R. Ahmad et al., Direct evidence for neutrino flavor transformation from neutral-current interactions in the sudbury neutrino observatory, Phys. Rev. Lett. 89 (2002) 011301 [nucl-ex/0204008] [SPIRES].CrossRefADSGoogle Scholar
  3. [3]
    KamLAND collaboration, K. Eguchi et al., First results from KamLAND: evidence for reactor anti- neutrino disappearance, Phys. Rev. Lett. 90 (2003) 021802 [hep-ex/0212021] [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    M. Maltoni, T. Schwetz, M.A. Tortola and J.W.F. Valle, Status of global fits to neutrino oscillations, New J. Phys. 6 (2004) 122 [hep-ph/0405172] [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    T. Schwetz, M.A. Tortola and J.W.F. Valle, Three-flavour neutrino oscillation update, New J. Phys. 10 (2008) 113011 [arXiv:0808.2016] [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    WMAP collaboration, D.N. Spergel et al., First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: determination of cosmological parameters, Astrophys. J. Suppl. 148 (2003) 175 [astro-ph/0302209] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    WMAP collaboration, E. Komatsu et al., Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: cosmological interpretation, Astrophys. J. Suppl. 180 (2009) 330 [arXiv:0803.0547] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    SDSS collaboration, M. Tegmark et al., Cosmological constraints from the SDSS luminous red galaxies, Phys. Rev. D 74 (2006) 123507 [astro-ph/0608632] [SPIRES].ADSGoogle Scholar
  9. [9]
    R.N. Mohapatra and J.W.F. Valle, Neutrino mass and Baryon-number nonconservation in superstring models, Phys. Rev. D 34 (1986) 1642 [SPIRES].ADSGoogle Scholar
  10. [10]
    C. Arina, F. Bazzocchi, N. Fornengo, J.C. Romao and J.W.F. Valle, Minimal supergravity sneutrino dark matter and inverse seesaw neutrino masses, Phys. Rev. Lett. 101 (2008) 161802 [arXiv:0806.3225] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    S. Weinberg, Baryon and lepton nonconserving processes, Phys. Rev. Lett. 43 (1979) 1566 [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    S. Weinberg, Varieties of Baryon and lepton nonconservation, Phys. Rev. D 22 (1980) 1694 [SPIRES].ADSGoogle Scholar
  13. [13]
    E. Ma, Pathways to naturally small neutrino masses, Phys. Rev. Lett. 81 (1998) 1171 [hep-ph/9805219] [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    P. Minkowski, μeγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977) 421 [SPIRES].ADSGoogle Scholar
  15. [15]
    T. Yanagida, Horizontal gauge symmetry and masses of neutrinos in Proceedings of the Workshop on the Baryon Number of the Universe and Unified Theories, National Laboratory for High Energy Physics (KEK), O. Sawada and A. Sugamoto eds., February 13–14 (1979), Tsukuba, Japan.Google Scholar
  16. [16]
    M Gell-Mann, P Ramond, R. Slansky, Complex spinors and unified theories, in Supergravity, P. van Niewenhuizen and D. Freedman ed. North Holland Publ. Co., Amsterdam (1979).Google Scholar
  17. [17]
    R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity nonconservation, Phys. Rev. Lett. 44 (1980) 912 [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    J. Schechter and J.W.F. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [SPIRES].ADSGoogle Scholar
  19. [19]
    T.P. Cheng and L.-F. Li, Neutrino masses, mixings and oscillations in SU(2) × U(1) models of electroweak interactions, Phys. Rev. D 22 (1980) 2860 [SPIRES].ADSGoogle Scholar
  20. [20]
    A. Zee, A theory of lepton number violation, neutrino majorana mass and oscillation, Phys. Lett. B 93 (1980) 389 [Erratum ibid. B 95 (1980) 461] [SPIRES].ADSGoogle Scholar
  21. [21]
    K.S. Babu, Model of ‘calculable’ majorana neutrino masses, Phys. Lett. B 203 (1988) 132 [SPIRES].ADSGoogle Scholar
  22. [22]
    A. Zee, Quantum numbers of Majorana neutrino masses, Nucl. Phys. B 264 (1986) 99 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, Lecture given at Cargese Summer Inst. Cargese, France, August 26 – September 8 (1979).Google Scholar
  24. [24]
    M. Malinsky, T. Ohlsson, Z.-z. Xing and H. Zhang, Non-unitary neutrino mixing and CP-violation in the minimal inverse seesaw model, Phys. Lett. B 679 (2009) 242 [arXiv:0905.2889] [SPIRES].ADSGoogle Scholar
  25. [25]
    M. Hirsch, H.V. Klapdor-Kleingrothaus and S.G. Kovalenko, B-L violating masses in softly broken supersymmetry, Phys. Lett. B 398 (1997) 311 [hep-ph/9701253] [SPIRES].ADSGoogle Scholar
  26. [26]
    M. Hirsch, M.A. Diaz, W. Porod, J.C. Romao and J.W.F. Valle, Neutrino masses and mixings from supersymmetry with bilinear R-parity violation: a theory for solar and atmospheric neutrino oscillations, Phys. Rev. D 62 (2000) 113008 [Erratum ibid. D65 (2002) 119901] [hep-ph/0004115] [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
    G. Jungman, M. Kamionkowski and K. Griest, Supersymmetric dark matter, Phys. Rept. 267 (1996) 195 [hep-ph/9506380] [SPIRES].CrossRefADSGoogle Scholar
  28. [28]
    G. Bertone, D. Hooper and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rept. 405 (2005) 279 [hep-ph/0404175] [SPIRES].CrossRefADSGoogle Scholar
  29. [29]
    T. Falk, K.A. Olive and M. Srednicki, Heavy sneutrinos as dark matter, Phys. Lett. B 339 (1994) 248 [hep-ph/9409270] [SPIRES].ADSGoogle Scholar
  30. [30]
    T. Asaka, K. Ishiwata and T. Moroi, Right-handed sneutrino as cold dark matter, Phys. Rev. D 73 (2006) 051301 [hep-ph/0512118] [ SPIRES].ADSGoogle Scholar
  31. [31]
    T. Asaka, K. Ishiwata and T. Moroi, Right-handed sneutrino as cold dark matter of the universe, Phys. Rev. D 75 (2007) 065001 [hep-ph/0612211] [SPIRES].ADSGoogle Scholar
  32. [32]
    S. Gopalakrishna, A. de Gouvêa and W. Porod, Right-handed sneutrinos as nonthermal dark matter, JCAP 05 (2006) 005 [hep-ph/0602027] [SPIRES].ADSGoogle Scholar
  33. [33]
    N. Arkani-Hamed, L.J. Hall, H. Murayama, D. Tucker-Smith and N. Weiner, Small neutrino masses from supersymmetry breaking, Phys. Rev. D 64 (2001) 115011 [hep-ph/0006312] [SPIRES].ADSGoogle Scholar
  34. [34]
    C. Arina and N. Fornengo, Sneutrino cold dark matter, a new analysis: Relic abundance and detection rates, JHEP 11 (2007) 029 [arXiv:0709.4477] [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    F. Deppisch and A. Pilaftsis, Thermal right-handed sneutrino dark matter in the F D -term model of hybrid inflation, JHEP 10 (2008) 080 [arXiv:0808.0490] [SPIRES].CrossRefADSGoogle Scholar
  36. [36]
    H.-S. Lee, K.T. Matchev and S. Nasri, Revival of the thermal sneutrino dark matter, Phys. Rev. D 76 (2007) 041302 [hep-ph/0702223] [SPIRES].ADSGoogle Scholar
  37. [37]
    D.G. Cerdeno and O. Seto, Right-handed sneutrino dark matter in the NMSSM, JCAP 08 (2009) 032 [arXiv:0903.4677] [SPIRES].ADSGoogle Scholar
  38. [38]
    D.G. Cerdeno, C. Muñoz and O. Seto, Right-handed sneutrino as thermal dark matter, Phys. Rev. D 79 (2009) 023510 [arXiv:0807.3029] [SPIRES].ADSGoogle Scholar
  39. [39]
    F. Deppisch and J.W.F. Valle, Enhanced lepton flavour violation in the supersymmetric inverse seesaw model, Phys. Rev. D 72 (2005) 036001 [hep-ph/0406040] [SPIRES].ADSGoogle Scholar
  40. [40]
    A. Dedes, H.E. Haber and J. Rosiek, Seesaw mechanism in the sneutrino sector and its consequences, JHEP 11 (2007) 059 [arXiv:0707.3718] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  41. [41]
    P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [SPIRES].ADSGoogle Scholar
  42. [42]
    J.F. Gunion and H.E. Haber, Higgs bosons in supersymmetric models. 1, Nucl. Phys. B 272 (1986) 1 [Erratum ibid. B 402 (1993) 567] [SPIRES].CrossRefADSGoogle Scholar
  43. [43]
    L. Lavoura, General formulae for f 1f 2γ, Eur. Phys. J. C 29 (2003) 191 [hep-ph/0302221] [SPIRES].CrossRefADSGoogle Scholar
  44. [44]
    A. Ilakovac and A. Pilaftsis, Flavor violating charged lepton decays in seesaw-type models, Nucl. Phys. B 437 (1995) 491 [hep-ph/9403398] [SPIRES].CrossRefADSGoogle Scholar
  45. [45]
    Particle Data Group collaboration, C. Amsler et al., Review of particle physics, Phys. Lett. B 667 (2008) 1 [SPIRES].ADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • M. Hirsch
    • 1
    Email author
  • T. Kernreiter
    • 2
  • J. C. Romão
    • 2
  • A. Villanova del Moral
    • 2
  1. 1.AHEP Group, Institut de Física Corpuscular - C.S.I.C.Universitat de València, Edifici Instituts d’InvestigacióValènciaSpain
  2. 2.Departamento de Física and CFTPInstituto Superior TécnicoLisboaPortugal

Personalised recommendations