Advertisement

Supersymmetric AdS4 black holes and attractors

  • Sergio L. CacciatoriEmail author
  • Dietmar Klemm
Article

Abstract

Using the general recipe given in arXiv:0804.0009, where all timelike supersymmetric solutions of \( \mathcal{N} = 2 \), D = 4 gauged supergravity coupled to abelian vector multiplets were classified, we construct the first examples of genuine supersymmetric black holes in AdS4 with nonconstant scalar fields. This is done for various choices of the prepotential, amongst others for the STU model. These solutions permit to study the BPS attractor flow in AdS. We also determine the most general supersymmetric static near-horizon geometry and obtain the attractor equations in gauged supergravity. As a general feature we find the presence of flat directions in the black hole potential, i.e., generically the values of the moduli on the horizon are not completely specified by the charges. For one of the considered prepotentials, the resulting moduli space is determined explicitely. Still, in all cases, we find that the black hole entropy depends only on the charges, in agreement with the attractor mechanism.

Keywords

Black Holes in String Theory AdS-CFT Correspondence Superstring Vacua 

References

  1. [1]
    A. Strominger and C. Vafa, Microscopic Origin of the Bekenstein-Hawking Entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [SPIRES].MathSciNetADSGoogle Scholar
  2. [2]
    S.L. Cacciatori, D. Klemm, D.S. Mansi and E. Zorzan, All timelike supersymmetric solutions of N = 2, D = 4 gauged supergravity coupled to abelian vector multiplets, JHEP 05 (2008) 097 [arXiv:0804.0009] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  4. [4]
    S. Ferrara, R. Kallosh and A. Strominger, N = 2 extremal black holes, Phys. Rev. D 52 (1995) 5412 [hep-th/9508072] [SPIRES].MathSciNetADSGoogle Scholar
  5. [5]
    A. Strominger, Macroscopic Entropy of N = 2 Extremal Black Holes, Phys. Lett. B 383 (1996) 39 [hep-th/9602111] [SPIRES].MathSciNetADSGoogle Scholar
  6. [6]
    S. Ferrara and R. Kallosh, Supersymmetry and Attractors, Phys. Rev. D 54 (1996) 1514 [hep-th/9602136] [SPIRES].MathSciNetADSGoogle Scholar
  7. [7]
    S. Ferrara and R. Kallosh, Universality of Supersymmetric Attractors, Phys. Rev. D 54 (1996) 1525 [hep-th/9603090] [SPIRES].MathSciNetADSGoogle Scholar
  8. [8]
    S. Ferrara, G.W. Gibbons and R. Kallosh, Black holes and critical points in moduli space, Nucl. Phys. B 500 (1997) 75 [hep-th/9702103] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  9. [9]
    A. Dabholkar, A. Sen and S.P. Trivedi, Black hole microstates and attractor without supersymmetry, JHEP 01 (2007) 096 [hep-th/0611143] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  10. [10]
    D.M. Kaplan, D.A. Lowe, J.M. Maldacena and A. Strominger, Microscopic entropy of N = 2 extremal black holes, Phys. Rev. D 55 (1997) 4898 [hep-th/9609204] [SPIRES].MathSciNetADSGoogle Scholar
  11. [11]
    G.T. Horowitz, D.A. Lowe and J.M. Maldacena, Statistical Entropy of Nonextremal Four-Dimensional Black Holes and U-duality, Phys. Rev. Lett. 77 (1996) 430 [hep-th/9603195] [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    A. Dabholkar, Microstates of non-supersymmetric black holes, Phys. Lett. B 402 (1997) 53 [hep-th/9702050] [SPIRES].MathSciNetADSGoogle Scholar
  13. [13]
    R. Emparan and G.T. Horowitz, Microstates of a neutral black hole in M-theory, Phys. Rev. Lett. 97 (2006) 141601 [hep-th/0607023] [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    J.F. Morales and H. Samtleben, Entropy function and attractors for AdS black holes, JHEP 10 (2006) 074 [hep-th/0608044] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    S. Bellucci, S. Ferrara, A. Marrani and A. Yeranyan, D = 4 Black Hole Attractors in N = 2 Supergravity with Fayet-Iliopoulos Terms, Phys. Rev. D 77 (2008) 085027 [arXiv:0802.0141] [SPIRES].MathSciNetADSGoogle Scholar
  16. [16]
    M. Huebscher, P. Meessen, T. Ortín and S. Vaulà, Supersymmetric N = 2 Einstein-Yang-Mills monopoles and covariant attractors, Phys. Rev. D 78 (2008) 065031 [arXiv:0712.1530] [SPIRES].ADSGoogle Scholar
  17. [17]
    W.A. Sabra, Anti-de Sitter BPS black holes in N = 2 gauged supergravity, Phys. Lett. B 458 (1999) 36 [hep-th/9903143] [SPIRES].MathSciNetADSGoogle Scholar
  18. [18]
    L. Andrianopoli et al., N = 2 supergravity and N = 2 super Yang-Mills theory on general scalar manifolds: Symplectic covariance, gaugings and the momentum map, J. Geom. Phys. 23 (1997) 111 [hep-th/9605032] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  19. [19]
    A. Van Proeyen, \( \mathcal{N} = 2 \) supergravity in d = 4, 5, 6 and its matter couplings, extended version of lectures given during the semester Supergravity, superstrings and M-theory at Institut Henri Poincaré, Paris, November 2000, http://itf.fys.kuleuven.ac.be/∼toine/home.htm#B.
  20. [20]
    S.L. Cacciatori, M.M. Caldarelli, D. Klemm and D.S. Mansi, More on BPS solutions of N = 2, D = 4 gauged supergravity, JHEP 07 (2004) 061 [hep-th/0406238] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    M.M. Caldarelli and D. Klemm, Supersymmetry of anti-de Sitter black holes, Nucl. Phys. B 545 (1999) 434 [hep-th/9808097] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    M.J. Duff and J.T. Liu, Anti-de Sitter black holes in gauged N = 8 supergravity, Nucl. Phys. B 554 (1999) 237 [hep-th/9901149] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    M. Cvetič et al., Embedding AdS black holes in ten and eleven dimensions, Nucl. Phys. B 558 (1999) 96 [hep-th/9903214] [SPIRES].CrossRefADSGoogle Scholar
  24. [24]
    A. Ceresole, R. D’Auria and S. Ferrara, The Symplectic Structure of N = 2 Supergravity and its Central Extension, Nucl. Phys. Proc. Suppl. 46 (1996) 67 [hep-th/9509160] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  25. [25]
    S. Ferrara and A. Marrani, On the Moduli Space of non-BPS Attractors for N = 2 Symmetric Manifolds, Phys. Lett. B 652 (2007) 111 [arXiv:0706.1667] [SPIRES].MathSciNetADSGoogle Scholar
  26. [26]
    S. Bellucci, S. Ferrara, A. Marrani and A. Yeranyan, stu Black Holes Unveiled, arXiv:0807.3503 [SPIRES].

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Dipartimento di Scienze Fisiche e MatematicheUniversità dell’InsubriaComoItaly
  2. 2.Dipartimento di Fisica dell’Università di MilanoMilanoItaly
  3. 3.INFN, Sezione di MilanoMilanoItaly

Personalised recommendations