Advertisement

Gödel space from wrapped M2-branes

  • T. S. Levi
  • J. Raeymaekers
  • D. Van den Bleeken
  • W. Van Herck
  • B. Vercnocke
Article

Abstract

We show that M-theory admits a supersymmetric compactification to the Gödel universe of the form Gödel3×S2×CY3. We interpret this geometry as coming from the backreaction of M2-branes wrapping the S2 in an AdS3×S2×CY3 flux compactification. In the black hole deconstruction proposal similar states give rise to the entropy of a D4-D0 black hole. The system is effectively described by a three-dimensional theory consisting of an axion-dilaton coupled to gravity with a negative cosmological constant. Other embeddings of the three-dimensional theory imply similar supersymmetric Gödel compactifications of type IIA/IIB string theory and F-theory.

Keywords

D-branes Black Holes in String Theory M-Theory AdS-CFT Correspondence 

References

  1. [1]
    E. Witten, Baryons and branes in Anti de Sitter space, JHEP 07 (1998) 006 [hep-th/9805112] [SPIRES].ADSGoogle Scholar
  2. [2]
    C. Bachas, M.R. Douglas and C. Schweigert, Flux stabilization of D-branes, JHEP 05 (2000) 048 [hep-th/0003037] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  3. [3]
    A. Simons, A. Strominger, D.M. Thompson and X. Yin, Supersymmetric branes in AdS 2 × S 2 × CY (3), Phys. Rev. D 71 (2005) 066008 [hep-th/0406121] [SPIRES].MathSciNetADSGoogle Scholar
  4. [4]
    J. Raeymaekers and K.P. Yogendran, Supersymmetric D-branes in the D1-D5 background, JHEP 12 (2006) 022 [hep-th/0607150] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  5. [5]
    J. Raeymaekers, Open String Attractors, JHEP 04 (2007) 075 [hep-th/0702142] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  6. [6]
    D. Gaiotto, A. Simons, A. Strominger and X. Yin, D0-branes in black hole attractors, hep-th/0412179 [SPIRES].
  7. [7]
    D. Gaiotto, A. Strominger and X. Yin, Superconformal black hole quantum mechanics, JHEP 11 (2005) 017 [hep-th/0412322] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  8. [8]
    F. Denef, D. Gaiotto, A. Strominger, D. Van den Bleeken and X. Yin, Black hole deconstruction, hep-th/0703252 [SPIRES].
  9. [9]
    E.G. Gimon and T.S. Levi, Black ring deconstruction, JHEP 04 (2008) 098 [arXiv:0706.3394] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  10. [10]
    S.R. Das et al., Branes wrapping black holes, Nucl. Phys. B 733 (2006) 297 [hep-th/0507080] [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    E. Witten, Three-dimensional gravity revisited, arXiv:0706.3359 [SPIRES].
  12. [12]
    W. Li, W. Song and A. Strominger, Chiral gravity in three dimensions, JHEP 04 (2008) 082 [arXiv:0801.4566] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  13. [13]
    B.R. Greene, A.D. Shapere, C. Vafa and S.-T. Yau, Stringy cosmic strings and noncompact Calabi-Yau manifolds, Nucl. Phys. B 337 (1990) 1 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  14. [14]
    K. Godel, An example of a new type of cosmological solutions of Einstein's field equations of graviation, Rev. Mod. Phys. 21 (1949) 447 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  15. [15]
    D. Israel, Quantization of heterotic strings in a Gödel/Anti de Sitter spacetime and chronology protection, JHEP 01 (2004) 042 [hep-th/0310158] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  16. [16]
    J.P. Gauntlett, J.B. Gutowski, C.M. Hull, S. Pakis and H.S. Reall, All supersymmetric solutions of minimal supergravity in five dimensions, Class. Quant. Grav. 20 (2003) 4587 [hep-th/0209114] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  17. [17]
    C.A.R. Herdeiro, Spinning deformations of the D1-D5 system and a geometric resolution of closed timelike curves, Nucl. Phys. B 665 (2003) 189 [hep-th/0212002] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  18. [18]
    T. Harmark and T. Takayanagi, Supersymmetric Gödel universes in string theory, Nucl. Phys. B 662 (2003) 3 [hep-th/0301206] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    G. Compere, S. Detournay and M. Romo, Supersymmetric Gödel and warped black holes in string theory, Phys. Rev. D 78 (2008) 104030 [arXiv:0808.1912] [SPIRES].MathSciNetADSGoogle Scholar
  20. [20]
    E.G. Gimon and P. Hořava, Over-rotating black holes, Gödel holography and the hypertube, hep-th/0405019 [SPIRES].
  21. [21]
    P. Berglund, E.G. Gimon and T.S. Levi, Supergravity microstates for BPS black holes and black rings, JHEP 06 (2006) 007 [hep-th/0505167] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  22. [22]
    I. Bena and N.P. Warner, Bubbling supertubes and foaming black holes, Phys. Rev. D 74 (2006) 066001 [hep-th/0505166] [SPIRES].MathSciNetADSGoogle Scholar
  23. [23]
    J. de Boer, F. Denef, S. El-Showk, I. Messamah and D. Van den Bleeken, Black hole bound states in AdS 3 × S 2, JHEP 11 (2008) 050 [arXiv:0802.2257] [SPIRES].CrossRefGoogle Scholar
  24. [24]
    J.P. Gauntlett, R.C. Myers and P.K. Townsend, Supersymmetry of rotating branes, Phys. Rev. D 59 (1999) 025001 [hep-th/9809065] [SPIRES].MathSciNetADSGoogle Scholar
  25. [25]
    E. Bergshoeff, E. Sezgin and P.K. Townsend, Supermembranes and eleven-dimensional supergravity, Phys. Lett. B 189 (1987) 75 [SPIRES].MathSciNetADSGoogle Scholar
  26. [26]
    E. Bergshoeff, R. Kallosh, T. Ortín and G. Papadopoulos, κ-symmetry, supersymmetry and intersecting branes, Nucl. Phys. B 502 (1997) 149 [hep-th/9705040] [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
    E.J. Hackett-Jones, D.C. Page and D.J. Smith, Topological charges for branes in M-theory, JHEP 10 (2003) 005 [hep-th/0306267] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  28. [28]
    D. Gaiotto, A. Strominger and X. Yin, The m5-brane elliptic genus: modularity and BPS states, hep-th/0607010.
  29. [29]
    J. de Boer, M.C.N. Cheng, R. Dijkgraaf, J. Manschot and E. Verlinde, A Farey tail for attractor black holes, JHEP 11 (2006) 024 [hep-th/0608059] [SPIRES].CrossRefGoogle Scholar
  30. [30]
    J. Raeymaekers, Near-horizon microstates of the D1-D5-P black hole, JHEP 02 (2008) 006 [arXiv:0710.4912] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  31. [31]
    J. Bellorin, P. Meessen and T. Ortin, All the supersymmetric solutions of N = 1, d = 5 ungauged supergravity, JHEP 01 (2007) 020 [hep-th/0610196].CrossRefMathSciNetADSGoogle Scholar
  32. [32]
    M. Huebscher, P. Meessen and T. Ortin, Supersymmetric solutions of N = 2 d = 4 SUGRA: the whole ungauged shebang, Nucl. Phys. B 759 (2006) 228 [hep-th/0606281] [SPIRES].CrossRefADSGoogle Scholar
  33. [33]
    A. Strominger, Loop corrections to the universal hypermultiplet, Phys. Lett. B 421 (1998) 139 [hep-th/9706195] [SPIRES].MathSciNetADSGoogle Scholar
  34. [34]
    K. Behrndt and S. Gukov, Domain walls and superpotentials from M theory on Calabi-Yau three-folds, Nucl. Phys. B 580 (2000) 225 [hep-th/0001082] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  35. [35]
    G.W. Gibbons, M.B. Green and M.J. Perry, Instantons and seven-branes in type IIB superstring theory, Phys. Lett. B 370 (1996) 37 [hep-th/9511080] [SPIRES].MathSciNetADSGoogle Scholar
  36. [36]
    E.I. Semenov, New exact solutions to the nonautonomous Liouville equation, Sibirsk. Mat. Zh. 49 (2008) 166.Google Scholar
  37. [37]
    I. Bengtsson and P. Sandin, Anti-de Sitter space, squashed and stretched, Class. Quant. Grav. 23 (2006) 971 [gr-qc/0509076].MATHCrossRefMathSciNetADSGoogle Scholar
  38. [38]
    M. Rooman and P. Spindel, Goedel metric as a squashed Anti-de Sitter geometry, Class. Quant. Grav. 15 (1998) 3241 [gr-qc/9804027] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  39. [39]
    D. Anninos, W. Li, M. Padi, W. Song and A. Strominger, Warped AdS 3 black holes, JHEP 03 (2009) 130 [arXiv:0807.3040] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  40. [40]
    E.K. Boyda, S. Ganguli, P. Hořava and U. Varadarajan, Holographic protection of chronology in universes of the Gödel type, Phys. Rev. D 67 (2003) 106003 [hep-th/0212087] [SPIRES].ADSGoogle Scholar
  41. [41]
    N. Drukker, B. Fiol and J. Simon, Gödel's universe in a supertube shroud, Phys. Rev. Lett. 91 (2003) 231601 [hep-th/0306057] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  42. [42]
    V. Balasubramanian, E.G. Gimon and T.S. Levi, Four dimensional black hole microstates: from D-branes to spacetime foam, JHEP 01 (2008) 056 [hep-th/0606118] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  43. [43]
    W. Israel, Singular hypersurfaces and thin shells in general relativity, Nuovo Cim. B44S10 (1966) 1 [Erratum ibid. B 48 (967) 463] [Nuovo Cim. B44 (1966) 1].CrossRefADSGoogle Scholar
  44. [44]
    J.R. David, G. Mandal, S. Vaidya and S.R. Wadia, Point mass geometries, spectral flow and AdS 3-CFT(2) correspondence, Nucl. Phys. B 564 (2000) 128 [hep-th/9906112] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  45. [45]
    M.A. Shifman and T. ter Veldhuis, Calculating the tension of domain wall junctions and vortices in generalized Wess-Zumino models, Phys. Rev. D 62 (2000) 065004 [hep-th/9912162] [SPIRES].ADSGoogle Scholar
  46. [46]
    J. Dai, R.G. Leigh and J. Polchinski, New connections between string theories, Mod. Phys. Lett. A 4 (1989) 2073 [SPIRES].MathSciNetADSGoogle Scholar
  47. [47]
    P. Horava and E. Witten, Heterotic and type I string dynamics from eleven dimensions, Nucl. Phys. B 460 (1996) 506 [hep-th/9510209] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  48. [48]
    D. Marolf and M. Trodden, Black holes and instabilities of negative tension branes, Phys. Rev. D 64 (2001) 065019 [hep-th/0102135] [SPIRES].MathSciNetADSGoogle Scholar
  49. [49]
    S.D. Mathur, The fuzzball proposal for black holes: An elementary review, Fortsch. Phys. 53 (2005) 793 [hep-th/0502050] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  50. [50]
    V. Balasubramanian, J. de Boer, S. El-Showk and I. Messamah, Black holes as effective geometries, Class. Quant. Grav. 25 (2008) 214004 [arXiv:0811.0263] [SPIRES].CrossRefADSGoogle Scholar
  51. [51]
    S.D. Mathur, Fuzzballs and the information paradox: a summary and conjectures, arXiv:0810.4525 [SPIRES].
  52. [52]
    O. Lunin and S.D. Mathur, AdS/CFT duality and the black hole information paradox, Nucl. Phys. B 623 (2002) 342 [hep-th/0109154] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  53. [53]
    S. Giusto and S.D. Mathur, Geometry of D1-D5-P bound states, Nucl. Phys. B 729 (2005) 203 [hep-th/0409067] [SPIRES]CrossRefMathSciNetADSGoogle Scholar
  54. [54]
    S. Giusto, S.D. Mathur and A. Saxena, 3-charge geometries and their CFT duals, Nucl. Phys. B 710 (2005) 425 [hep-th/0406103] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  55. [55]
    S. Giusto, S.D. Mathur and A. Saxena, Dual geometries for a set of 3-charge microstates, Nucl. Phys. B 701 (2004) 357 [hep-th/0405017] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  56. [56]
    I. Bena and N.P. Warner, One ring to rule them all…and in the darkness bind them?, Adv. Theor. Math. Phys. 9 (2005) 667 [hep-th/0408106] [SPIRES].MATHMathSciNetGoogle Scholar
  57. [57]
    V.S. Rychkov, D1-D5 black hole microstate counting from supergravity, JHEP 01 (2006) 063 [hep-th/0512053] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  58. [58]
    J. de Boer, S. El-Showk, I. Messamah and D. Van den Bleeken, Quantizing N = 2 multicenter solutions, arXiv:0807.4556 [SPIRES].
  59. [59]
    J. de Boer, S. El-Showk, I. Messamah and D. Van den Bleeken, A bound on the entropy of supergravity?, arXiv:0906.0011 [SPIRES].
  60. [60]
    M. Guica, T. Hartman, W. Song and A. Strominger, The Kerr/CFT Correspondence, arXiv:0809.4266 [SPIRES].
  61. [61]
    G. Compere and S. Detournay, Centrally extended symmetry algebra of asymptotically Goedel spacetimes, JHEP 03 (2007) 098 [hep-th/0701039] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  62. [62]
    A. Strominger and C. Vafa, Microscopic origin of the Bekenstein-Hawking entropy, Phys. Lett. B 379 (1996) 99 [hep-th/9601029] [SPIRES].MathSciNetADSGoogle Scholar
  63. [63]
    J. Raeymaekers, W. Van Herck, B. Vercnocke and T. Wyder, 5D fuzzball geometries and 4D polar states, JHEP 10 (2008) 039 [arXiv:0805.3506] [SPIRES].CrossRefADSGoogle Scholar
  64. [64]
    D. Gaiotto, A. Strominger and X. Yin, New connections between 4D and 5D black holes, JHEP 02 (2006) 024 [hep-th/0503217] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  65. [65]
    J.P. Gauntlett and S. Pakis, The geometry of D = 11 Killing spinors, JHEP 04 (2003) 039 [hep-th/0212008] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  66. [66]
    E. Bergshoeff et al., N = 2 supergravity in five dimensions revisited, Class. Quant. Grav. 21 (2004) 3015 [hep-th/0403045] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  • T. S. Levi
    • 1
  • J. Raeymaekers
    • 2
  • D. Van den Bleeken
    • 3
  • W. Van Herck
    • 4
  • B. Vercnocke
    • 4
    • 5
  1. 1.Department of Physics and AstronomyUniversity of British ColumbiaVancouverCanada
  2. 2.Institute of Physics of the ASCR, v.v.i.Prague 8Czech Republic
  3. 3.NHETC and Department of Physics and AstronomyRutgers UniversityPiscatawayU.S.A.
  4. 4.Institute for Theoretical Physics, K.U. LeuvenLeuvenBelgium
  5. 5.Jefferson Physical LaboratoryHarvard UniversityCambridgeU.S.A.

Personalised recommendations