Advertisement

One-loop Higgs plus four gluon amplitudes: full analytic results

  • Simon Badger
  • E. W. Nigel Glover
  • Pierpaolo Mastrolia
  • Ciaran Williams
Open Access
Article

Abstract

We consider one-loop amplitudes of a Higgs boson coupled to gluons in the limit of a large top quark mass. We treat the Higgs as the real part of a complex field ϕ that couples to the self-dual field strengths and compute the one-loop corrections to the ϕ-NMHV amplitude, which contains one gluon of positive helicity whilst the remaining three have negative helicity. We use four-dimensional unitarity to construct the cut-containing contributions and a hybrid of Feynman diagram and recursive based techniques to determine the rational piece. Knowledge of the ϕ-NMHV contribution completes the analytic calculation of the Higgs plus four gluon amplitude. For completeness we also include expressions for the remaining helicity configurations which have been calculated elsewhere. These amplitudes are relevant for Higgs plus jet production via gluon fusion in the limit where the top quark is large compared to all other scales in the problem.

Keywords

Higgs Physics Jets NLO Computations QCD 

References

  1. [1]
    T. Han, G. Valencia and S. Willenbrock, Structure function approach to vector boson scattering in p p collisions, Phys. Rev. Lett. 69 (1992) 3274 [hep-ph/9206246] [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    T. Figy, C. Oleari and D. Zeppenfeld, Next-to-leading order jet distributions for Higgs boson production via weak-boson fusion, Phys. Rev. D 68 (2003) 073005 [hep-ph/0306109] [SPIRES].ADSGoogle Scholar
  3. [3]
    T. Figy and D. Zeppenfeld, QCD corrections to jet correlations in weak boson fusion, Phys. Lett. B 591 (2004) 297 [hep-ph/0403297] [SPIRES].ADSGoogle Scholar
  4. [4]
    E.L. Berger and J.M. Campbell, Higgs boson production in weak boson fusion at next-to-leading order, Phys. Rev. D 70 (2004) 073011 [hep-ph/0403194] [SPIRES].ADSGoogle Scholar
  5. [5]
    M. Ciccolini, A. Denner and S. Dittmaier, Strong and electroweak corrections to the production of Higgs+2jets via weak interactions at the LHC, Phys. Rev. Lett. 99 (2007) 161803 [arXiv:0707.0381] [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    M. Ciccolini, A. Denner and S. Dittmaier, Electroweak and QCD corrections to Higgs production via vector-boson fusion at the LHC, Phys. Rev. D 77 (2008) 013002 [arXiv:0710.4749] [SPIRES].ADSGoogle Scholar
  7. [7]
    V. Del Duca, W. Kilgore, C. Oleari, C. Schmidt and D. Zeppenfeld, H + 2 jets via gluon fusion, Phys. Rev. Lett. 87 (2001) 122001 [hep-ph/0105129] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    S. Dawson and R.P. Kauffman, Higgs boson plus multi - jet rates at the SSC, Phys. Rev. Lett. 68 (1992) 2273 [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    R.P. Kauffman, S.V. Desai and D. Risal, Production of a Higgs boson plus two jets in hadronic collisions, Phys. Rev. D 55 (1997) 4005 [hep-ph/9610541] [SPIRES].ADSGoogle Scholar
  10. [10]
    F. Wilczek, Decays of Heavy Vector Mesons Into Higgs Particles, Phys. Rev. Lett. 39 (1977) 1304 [SPIRES].CrossRefADSGoogle Scholar
  11. [11]
    A. Djouadi, M. Spira and P.M. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett. B 264 (1991) 440 [SPIRES].ADSGoogle Scholar
  12. [12]
    S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283 [SPIRES].CrossRefADSGoogle Scholar
  13. [13]
    M. Krämer, 1, E. Laenen and M. Spira, Soft gluon radiation in Higgs boson production at the LHC, Nucl. Phys. B 511 (1998) 523 [hep-ph/9611272] [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    V. Del Duca, W. Kilgore, C. Oleari, C.R. Schmidt and D. Zeppenfeld, Kinematical limits on Higgs boson production via gluon fusion in association with jets, Phys. Rev. D 67 (2003) 073003 [hep-ph/0301013] [SPIRES].ADSGoogle Scholar
  15. [15]
    J.M. Campbell, R.K. Ellis and G. Zanderighi, Next-to-leading order Higgs + 2 jet production via gluon fusion, JHEP 10 (2006) 028 [hep-ph/0608194] [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    V. Del Duca, A. Frizzo and F. Maltoni, Higgs boson production in association with three jets, JHEP 05 (2004) 064 [hep-ph/0404013] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    S.D. Badger, E.W.N. Glover and V.V. Khoze, MHV rules for Higgs plus multi-parton amplitudes, JHEP 03 (2005) 023 [hep-th/0412275] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  18. [18]
    L.J. Dixon, E.W.N. Glover and V.V. Khoze, MHV rules for Higgs plus multi-gluon amplitudes, JHEP 12 (2004) 015 [hep-th/0411092] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  19. [19]
    R.K. Ellis, W.T. Giele and G. Zanderighi, Virtual QCD corrections to Higgs boson plus four parton processes, Phys. Rev. D 72 (2005) 054018 [hep-ph/0506196] [SPIRES].ADSGoogle Scholar
  20. [20]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One-Loop n-Point Gauge Theory Amplitudes, Unitarity and Collinear Limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  21. [21]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, Fusing gauge theory tree amplitudes into loop amplitudes, Nucl. Phys. B 435 (1995) 59 [hep-ph/9409265] [SPIRES].CrossRefADSGoogle Scholar
  22. [22]
    Z. Bern and A.G. Morgan, Massive Loop Amplitudes from Unitarity, Nucl. Phys. B 467 (1996) 479 [hep-ph/9511336] [SPIRES].CrossRefADSGoogle Scholar
  23. [23]
    Z. Bern, L.J. Dixon and D.A. Kosower, On-shell recurrence relations for one-loop QCD amplitudes, Phys. Rev. D 71 (2005) 105013 [hep-th/0501240] [SPIRES].MathSciNetADSGoogle Scholar
  24. [24]
    T. Binoth, J.P. Guillet and G. Heinrich, Algebraic evaluation of rational polynomials in one-loop amplitudes, JHEP 02 (2007) 013 [hep-ph/0609054] [SPIRES].CrossRefADSGoogle Scholar
  25. [25]
    Z. Xiao, G. Yang and C.-J. Zhu, The rational part of QCD amplitude. I: The general formalism, Nucl. Phys. B 758 (2006) 1 [hep-ph/0607015] [SPIRES].CrossRefADSGoogle Scholar
  26. [26]
    X. Su, Z. Xiao, G. Yang and C.-J. Zhu, The rational part of QCD amplitude. II: The five-gluon, Nucl. Phys. B 758 (2006) 35 [hep-ph/0607016] [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
    Z. Xiao, G. Yang and C.-J. Zhu, The rational parts of one-loop QCD amplitudes III: The six-gluon case, Nucl. Phys. B 758 (2006) 53 [hep-ph/0607017] [SPIRES].CrossRefADSGoogle Scholar
  28. [28]
    R. Britto, F. Cachazo and B. Feng, Generalized unitarity and one-loop amplitudes in N = 4 super-Yang-Mills, Nucl. Phys. B 725 (2005) 275 [hep-th/0412103] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  29. [29]
    D. Forde, Direct extraction of one-loop integral coefficients, Phys. Rev. D 75 (2007) 125019 [arXiv:0704.1835] [SPIRES].MathSciNetADSGoogle Scholar
  30. [30]
    P. Mastrolia, On triple-cut of scattering amplitudes, Phys. Lett. B 644 (2007) 272 [hep-th/0611091] [SPIRES].MathSciNetADSGoogle Scholar
  31. [31]
    R. Britto, E. Buchbinder, F. Cachazo and B. Feng, One-loop amplitudes of gluons in SQCD, Phys. Rev. D 72 (2005) 065012 [hep-ph/0503132] [SPIRES].ADSGoogle Scholar
  32. [32]
    R. Britto, B. Feng and P. Mastrolia, The cut-constructible part of QCD amplitudes, Phys. Rev. D 73 (2006) 105004 [hep-ph/0602178] [SPIRES].ADSGoogle Scholar
  33. [33]
    N.E.J. Bjerrum-Bohr, D.C. Dunbar and W.B. Perkins, Analytic Structure of Three-Mass Triangle Coefficients, JHEP 04 (2008) 038 [arXiv:0709.2086] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  34. [34]
    E.W. Nigel Glover and C. Williams, One-Loop Gluonic Amplitudes from Single Unitarity Cuts, JHEP 12 (2008) 067 [arXiv:0810.2964] [SPIRES].CrossRefGoogle Scholar
  35. [35]
    G. Ossola, C.G. Papadopoulos and R. Pittau, On the Rational Terms of the one-loop amplitudes, JHEP 05 (2008) 004 [arXiv:0802.1876] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  36. [36]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One-loop self-dual and N = 4 super Yang-Mills, Phys. Lett. B 394 (1997) 105 [hep-th/9611127] [SPIRES].MathSciNetADSGoogle Scholar
  37. [37]
    C. Anastasiou, R. Britto, B. Feng, Z. Kunszt and P. Mastrolia, Unitarity cuts and reduction to master integrals in d dimensions for one-loop amplitudes, JHEP 03 (2007) 111 [hep-ph/0612277] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  38. [38]
    C. Anastasiou, R. Britto, B. Feng, Z. Kunszt and P. Mastrolia, D-dimensional unitarity cut method, Phys. Lett. B 645 (2007) 213 [hep-ph/0609191] [SPIRES].ADSGoogle Scholar
  39. [39]
    S.D. Badger, Direct Extraction Of One Loop Rational Terms, JHEP 01 (2009) 049 [arXiv:0806.4600] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  40. [40]
    R. Britto, F. Cachazo and B. Feng, New Recursion Relations for Tree Amplitudes of Gluons, Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  41. [41]
    R. Britto, F. Cachazo, B. Feng and E. Witten, Direct Proof Of Tree-Level Recursion Relation In Yang- Mills Theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  42. [42]
    C.F. Berger, Z. Bern, L.J. Dixon, D. Forde and D.A. Kosower, Bootstrapping one-loop QCD amplitudes with general helicities, Phys. Rev. D 74 (2006) 036009 [hep-ph/0604195] [SPIRES].ADSGoogle Scholar
  43. [43]
    G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042 [arXiv:0711.3596] [SPIRES].CrossRefADSGoogle Scholar
  44. [44]
    R.K. Ellis, W.T. Giele and Z. Kunszt, A Numerical Unitarity Formalism for One-Loop Amplitudes, PoS(RAD COR 2007)020 [arXiv:0802.4227] [SPIRES].
  45. [45]
    C.F. Berger et al., An Automated Implementation of On-Shell Methods for One-Loop Amplitudes, Phys. Rev. D 78 (2008) 036003 [arXiv:0803.4180] [SPIRES].ADSGoogle Scholar
  46. [46]
    C.F. Berger, V. Del Duca and L.J. Dixon, Recursive construction of Higgs+multiparton loop amplitudes: The last of the phi-nite loop amplitudes, Phys. Rev. D 74 (2006) 094021 [hep-ph/0608180] [SPIRES].ADSGoogle Scholar
  47. [47]
    S.D. Badger, E.W.N. Glover and K. Risager, One-loop phi-MHV amplitudes using the unitarity bootstrap, JHEP 07 (2007) 066 [arXiv:0704.3914] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  48. [48]
    E.W.N. Glover, P. Mastrolia and C. Williams, One-loop phi-MHV amplitudes using the unitarity bootstrap: the general helicity case, JHEP 08 (2008) 017 [arXiv:0804.4149] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  49. [49]
    S.D. Badger and E.W.N. Glover, One-loop helicity amplitudes for Hgluons: the allminus configuration, Nucl. Phys. Proc. Suppl. 160 (2006) 71 [hep-ph/0607139] [SPIRES].CrossRefADSGoogle Scholar
  50. [50]
    L.J. Dixon and Y. Sofianatos, Analytic one-loop amplitudes for a Higgs boson plus four partons, JHEP 08 (2009) 058 [arXiv:0906.0008] [SPIRES].CrossRefADSGoogle Scholar
  51. [51]
    S. Badger, J.M. Campbell, R.K. Ellis and C. Williams, Analytic results for the one-loop NMHV Hqqgg amplitude, JHEP 12 (2009) 035 [arXiv:0910.4481] [SPIRES].CrossRefGoogle Scholar
  52. [52]
    P. Mastrolia, Double-Cut of Scattering Amplitudes and Stokes’ Theorem, Phys. Lett. B 678 (2009) 246 [arXiv:0905.2909] [SPIRES].MathSciNetADSGoogle Scholar
  53. [53]
    D. Maître and P. Mastrolia, S@M, a Mathematica Implementation of the Spinor-Helicity Formalism, Comput. Phys. Commun. 179 (2008) 501 [arXiv:0710.5559] [SPIRES].CrossRefADSGoogle Scholar
  54. [54]
    K.G. Chetyrkin, B.A. Kniehl and M. Steinhauser, Decoupling relations to O(α s 3 ) and their connection to low-energy theorems, Nucl. Phys. B 510 (1998) 61 [hep-ph/9708255] [SPIRES].CrossRefADSGoogle Scholar
  55. [55]
    T. Inami, T. Kubota and Y. Okada, Effective gauge theory and the effect of heavy quarks in Higgs boson decays, Z. Phys. C 18 (1983) 69 [SPIRES].ADSGoogle Scholar
  56. [56]
    G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  57. [57]
    P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279 [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  58. [58]
    Z. Bern, L.J. Dixon and D.A. Kosower, Dimensionally regulated pentagon integrals, Nucl. Phys. B 412 (1994) 751 [hep-ph/9306240] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  59. [59]
    H.J. Lu and C.A. Perez, Massless one loop scalar three point integral and associated Clausen, Glaisher and L functions, SLAC-PUB-5809 [SPIRES].
  60. [60]
    T. Binoth, J.P. Guillet, G. Heinrich and C. Schubert, Calculation of 1-loop hexagon amplitudes in the Yukawa model, Nucl. Phys. B 615 (2001) 385 [hep-ph/0106243] [SPIRES].CrossRefADSGoogle Scholar
  61. [61]
    A. van Hameren, J. Vollinga and S. Weinzierl, Automated computation of one-loop integrals in massless theories, Eur. Phys. J. C 41 (2005) 361 [hep-ph/0502165] [SPIRES].CrossRefADSGoogle Scholar
  62. [62]
    R.K. Ellis and G. Zanderighi, Scalar one-loop integrals for QCD, JHEP 02 (2008) 002 [arXiv:0712.1851] [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • Simon Badger
    • 1
  • E. W. Nigel Glover
    • 2
  • Pierpaolo Mastrolia
    • 3
  • Ciaran Williams
    • 2
  1. 1.Deutches Elektronen-Synchrotron DESYZeuthenGermany
  2. 2.Department of PhysicsUniversity of DurhamDurhamU.K.
  3. 3.Theory DivisionCERNGeneva 23Switzerland

Personalised recommendations