Multiparton interactions and rescattering

  • R. Corke
  • T. Sjöstrand


The concept of multiple partonic interactions in hadronic events is vital for the understanding of both minimum-bias and underlying-event physics. The area is rather little studied, however, and current models offer a far from complete coverage, even of the effects we know ought to be there. In this article we address one such topic, namely that of rescattering, where an already scattered parton is allowed to take part in another subsequent scattering. A framework for rescattering is introduced for the Pythia 8 event generator and fully integrated with normal multiparton interactions and initial- and final-state radiation. Using this model, the effects on event structure are studied, and distributions are shown both for minimum-bias and jet events.


QCD Phenomenology Phenomenological Models 


  1. [1]
    T. Sjöstrand and P.Z. Skands, Multiple interactions and the structure of beam remnants, JHEP 03 (2004) 053 [hep-ph/0402078] [SPIRES].CrossRefADSGoogle Scholar
  2. [2]
    T. Sjöstrand and M. van Zijl, A multiple interaction model for the event structure in hadron collisions, Phys. Rev. D 36 (1987) 2019 [SPIRES].ADSGoogle Scholar
  3. [3]
    H.-U. Bengtsson and T. Sjöstrand, The Lund Monte Carlo for hadronic processes: PYTHIA version 4.8, Comput. Phys. Commun. 46 (1987) 43 [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    T. Sjöstrand and P.Z. Skands, Transverse-momentum-ordered showers and interleaved multiple interactions, Eur. Phys. J. C 39 (2005) 129 [hep-ph/0408302] [SPIRES].CrossRefADSGoogle Scholar
  6. [6]
    M. Sandhoff and P. Skands, Colour annealing — A toy model of colour reconnections, presented at Les Houches Workshop on Physics at TeV Colliders, May 2–20, Les Houches, France (2005).Google Scholar
  7. [7]
    P.Z. Skands and D. Wicke, Non-perturbative QCD effects and the top mass at the Tevatron, Eur. Phys. J. C 52 (2007) 133 [hep-ph/0703081] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [SPIRES].CrossRefADSGoogle Scholar
  9. [9]
    R. Engel, Photoproduction within the two component dual parton model. 1. Amplitudes and cross-sections, Z. Phys. C 66 (1995) 203 [SPIRES].MathSciNetADSGoogle Scholar
  10. [10]
    R. Engel and J. Ranft, Hadronic photon-photon interactions at high-energies, Phys. Rev. D 54 (1996) 4244 [hep-ph/9509373] [SPIRES].ADSGoogle Scholar
  11. [11]
    UA5 collaboration, G.J. Alner et al., The UA5 high-energy \( \bar pp \) simulation program, Nucl. Phys. B 291 (1987) 445 [SPIRES].CrossRefADSGoogle Scholar
  12. [12]
    G. Marchesini and B.R. Webber, Associated transverse energy in hadronic jet production, Phys. Rev. D 38 (1988) 3419 [SPIRES].ADSGoogle Scholar
  13. [13]
    G. Marchesini et al., HERWIG: a Monte Carlo event generator for simulating hadron emission reactions with interfering gluons. Version 5.1 — April 1991, Comput. Phys. Commun. 67 (1992) 465 [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    J.M. Butterworth, J.R. Forshaw and M.H. Seymour, Multiparton interactions in photoproduction at HERA, Z. Phys. C 72 (1996) 637 [hep-ph/9601371] [SPIRES].ADSGoogle Scholar
  15. [15]
    I. Borozan and M.H. Seymour, An eikonal model for multiparticle production in hadron hadron interactions, JHEP 09 (2002) 015 [hep-ph/0207283] [SPIRES].CrossRefADSGoogle Scholar
  16. [16]
    M. Bahr, S. Gieseke and M.H. Seymour, Simulation of multiple partonic interactions in HERWIG++, JHEP 07 (2008) 076 [arXiv:0803.3633] [SPIRES].CrossRefADSGoogle Scholar
  17. [17]
    M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [SPIRES].CrossRefADSGoogle Scholar
  18. [18]
    Axial Field Spectrometer collaboration, T. Akesson et al., Double parton scattering in pp collisions at \( \sqrt s = 63\;GeV \), Z. Phys. C 34 (1987) 163 [SPIRES].ADSGoogle Scholar
  19. [19]
    CDF collaboration, F. Abe et al., Double parton scattering in \( \bar pp \) collisions at \( \sqrt s = 1.8\;TeV \), Phys. Rev. D 56 (1997) 3811 [SPIRES].ADSGoogle Scholar
  20. [20]
    D0 Collaboration, Double parton interactions in gamma+3 jet events in pp(bar) collisions at \( \sqrt s = 1.96\;TeV \) in D0, D0 NOTE 5910-CONF,
  21. [21]
    CDF collaboration, R.D. Field, The underlying event in hard scattering processes, hep-ph/0201192 [SPIRES].
  22. [22]
    CDF collaboration, R. Field and R.C. Group, PYTHIA tune A, HERWIG and JIMMY in Run 2 at CDF, hep-ph/0510198 [SPIRES].
  23. [23]
    CDF Collaboration, R.D. Field, Studying the underlying event at CDF, presented at 33rd International Conference on High Energy Physics (ICHEP06), July 26–August 2, Moscow, Russia (2006).Google Scholar
  24. [24]
    CDF collaboration, D. Kar, Measurement of the Underlying Event at Tevatron, arXiv:0905.2323 [SPIRES].
  25. [25]
    R.D. Field, recent talks available at˜rfield/cdf/rdf_talks.html.
  26. [26]
    UA1 collaboration, C. Albajar et al., Production of low transverse energy clusters in \( \bar pp \) collisions at \( \sqrt s = 0.2\;TeV \) to 0.9 TeV and their interpretation in terms of QCD jets, Nucl. Phys. B 309 (1988) 405 [SPIRES].CrossRefADSGoogle Scholar
  27. [27]
    P.Z. Skands, The Perugia tunes, arXiv:0905.3418 [SPIRES].
  28. [28]
    A. Buckley, H. Hoeth, H. Lacker, H. Schulz and J.E. von Seggern, Systematic event generator tuning for the LHC, arXiv:0907.2973 [SPIRES].
  29. [29]
    A. Moraes, C. Buttar and I. Dawson, Prediction for minimum bias and the underlying event at LHC energies, Eur. Phys. J. C 50 (2007) 435 [SPIRES].CrossRefADSGoogle Scholar
  30. [30]
    N. Paver and D. Treleani, Multiple parton interactions and multi-jet events at collider and Tevatron energies, Phys. Lett. B 146 (1984) 252 [SPIRES].ADSGoogle Scholar
  31. [31]
    N. Paver and D. Treleani, Multiple parton processes in the TeV region, Z. Phys. C 28 (1985) 187 [SPIRES].ADSGoogle Scholar
  32. [32]
    E. Cattaruzza and D. Treleani, Cronin effect and energy conservation constraints in high energy proton nucleus collisions, Phys. Rev. D 69 (2004) 094006 [hep-ph/0401067] [SPIRES].ADSGoogle Scholar
  33. [33]
    J. Bartels, M. Salvadore and G.P. Vacca, AGK cutting rules and multiple scattering in hadronic collisions, Eur. Phys. J. C 42 (2005) 53 [hep-ph/0503049] [SPIRES].CrossRefADSGoogle Scholar
  34. [34]
    V.A. Khoze, A.D. Martin and M.G. Ryskin, On the role of hard rescattering in exclusive diffractive Higgs production, JHEP 05 (2006) 036 [hep-ph/0602247] [SPIRES].CrossRefADSGoogle Scholar
  35. [35]
    E. Avsar, G. Gustafson and L. Lönnblad, Small-x dipole evolution beyond the large-N c limit, JHEP 01 (2007) 012 [hep-ph/0610157] [SPIRES].ADSGoogle Scholar
  36. [36]
    C. Flensburg, G. Gustafson and L. Lönnblad, Elastic and quasi-elastic pp and γ*p scattering in the dipole model, Eur. Phys. J. C 60 (2009) 233 [arXiv:0807.0325] [SPIRES].CrossRefADSGoogle Scholar
  37. [37]
    G. Calucci and D. Treleani, Multi-parton correlations and ‘exclusive’ cross sections, Phys. Rev. D 79 (2009) 074013 [arXiv:0901.3089] [SPIRES].ADSGoogle Scholar
  38. [38]
    J.W. Cronin et al., Production of hadrons with large transverse momentum at 200 GeV, 300 GeV and 400 GeV, Phys. Rev. D 11 (1975) 3105 [SPIRES].ADSGoogle Scholar
  39. [39]
    A. Donnachie and P.V. Landshoff, Total cross-sections, Phys. Lett. B 296 (1992) 227 [hep-ph/9209205] [SPIRES].ADSGoogle Scholar
  40. [40]
    J. Dischler and T. Sjöstrand, A Toy model of color screening in the proton, Eur. Phys. J. direct C 3 (2001) 2 [hep-ph/0011282] [SPIRES].Google Scholar
  41. [41]
    G. Gustafson, L. Lönnblad and G. Miu, Hadronic collisions in the linked dipole chain model, Phys. Rev. D 67 (2003) 034020 [hep-ph/0209186] [SPIRES].ADSGoogle Scholar
  42. [42]
    V.N. Gribov and L.N. Lipatov, Deep inelastic ep scattering in perturbation theory, Sov. J. Nucl. Phys. 15 (1972) 438 [SPIRES].Google Scholar
  43. [43]
    G. Altarelli and G. Parisi, Asymptotic freedom in parton language, Nucl. Phys. B 126 (1977) 298 [SPIRES].CrossRefADSGoogle Scholar
  44. [44]
    Y.L. Dokshitzer, Calculation of the structure functions for deep inelastic scattering and e + e annihilation by perturbation theory in quantum chromodynamics, Sov. Phys. JETP 46 (1977) 641 [SPIRES].ADSGoogle Scholar
  45. [45]
    V.V. Sudakov, Vertex parts at very high-energies in quantum electrodynamics, Sov. Phys. JETP 3 (1956) 65 [SPIRES].zbMATHMathSciNetGoogle Scholar
  46. [46]
    T. Sjöstrand, A model for initial state parton showers, Phys. Lett. B 157 (1985) 321 [SPIRES].ADSGoogle Scholar
  47. [47]
    M. Bengtsson, T. Sjöstrand and M. van Zijl, Initial state radiation effects on W and jet production, Z. Phys. C 32 (1986) 67 [SPIRES].ADSGoogle Scholar
  48. [48]
    G. Gustafson, Dual description of a confined color field, Phys. Lett. B 175 (1986) 453 [SPIRES].ADSGoogle Scholar
  49. [49]
    G. Gustafson and U. Pettersson, Dipole formulation of QCD cascades, Nucl. Phys. B 306 (1988) 746 [SPIRES].CrossRefADSGoogle Scholar
  50. [50]
    L. Lönnblad, ARIADNE version 4: a Program for simulation of QCD cascades implementing the color dipole model, Comput. Phys. Commun. 71 (1992) 15 [SPIRES].CrossRefADSGoogle Scholar
  51. [51]
    S. Catani and M.H. Seymour, A general algorithm for calculating jet cross sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [hep-ph/9605323] [SPIRES].CrossRefADSGoogle Scholar
  52. [52]
    H. Hoeth, private communication (2009).Google Scholar
  53. [53]
    C. Buttar et al., The underlying event, in S. Alekhin et al., HERA and the LHC — A workshop on the implications of HERA for LHC physics: proceedings Part A, (2005), see page 192 [hep-ph/0601012] [SPIRES].
  54. [54]
    M. Glück, E. Hoffmann, and E. Reya, Scaling violations and the gluon distribution of the nucleon, Zeit. Phys. C 13 (1982) 119 [].ADSGoogle Scholar
  55. [55]
    CDF collaboration, T. Aaltonen et al., Measurement of particle production and inclusive differential cross sections in \( p\bar p \) collisions at \( \sqrt s = 1.96\;TeV \), Phys. Rev. D 79 (2009) 112005 [arXiv:0904.1098] [SPIRES].ADSGoogle Scholar
  56. [56]
    M. Cacciari and G.P. Salam, Dispelling the N 3 myth for the k t jet-finder, Phys. Lett. B641 (2006) 57 [hep-ph/0512210] [SPIRES].ADSGoogle Scholar
  57. [57]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [SPIRES].CrossRefADSGoogle Scholar
  58. [58]
    D. Binosi and L. Theussl, JaxoDraw: a graphical user interface for drawing Feynman diagrams, Comput. Phys. Commun. 161 (2004) 76 [hep-ph/0309015] [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsLund UniversityLundSweden

Personalised recommendations