Complete supersymmetry on the lattice and a No-Go theorem

  • Georg Bergner


In this work a lattice formulation of a supersymmetric theory is proposed and tested that preserves the complete supersymmetry on the lattice. The results of a onedimensional nonperturbative simulation show the realization of the full supersymmetry and the correct continuum limit of the theory. It is proven here that the violation of supersymmetry due to the absence of the Leibniz rule on the lattice can be amended only with a nonlocal derivative and nonlocal interaction term. The fermion doubling problem is also discussed, which leads to another important source of supersymmetry breaking on the lattice. This problem is also solved with a nonlocal realization.


Lattice Quantum Field Theory Supersymmetry Breaking Supersymmetric gauge theory Superspaces 


  1. [1]
    J. Giedt, Deconstruction and other approaches to supersymmetric lattice field theories, Int. J. Mod. Phys. A 21 (2006) 3039 [hep-lat/0602007] [SPIRES].MathSciNetADSGoogle Scholar
  2. [2]
    A. Feo, Supersymmetry on the lattice, Nucl. Phys. Proc. Suppl. 119 (2003) 198 [hep-lat/0210015] [SPIRES].zbMATHCrossRefADSGoogle Scholar
  3. [3]
    D.B. Kaplan, Supersymmetry on the lattice, Eur. Phys. J. ST 152 (2007) 89 [SPIRES].Google Scholar
  4. [4]
    I. Montvay, Tuning to N = 2 supersymmetry in the SU(2) adjoint Higgs-Yukawa model, Nucl. Phys. B 445 (1995) 399 [hep-lat/9503009] [SPIRES].CrossRefADSGoogle Scholar
  5. [5]
    S. Elitzur, E. Rabinovici and A. Schwimmer, Supersymmetric models on the lattice, Phys. Lett. B 119 (1982) 165 [SPIRES].MathSciNetADSGoogle Scholar
  6. [6]
    S. Catterall and S. Karamov, A two-dimensional lattice model with exact supersymmetry, Nucl. Phys. Proc. Suppl. 106 (2002) 935 [hep-lat/0110071] [SPIRES].CrossRefADSGoogle Scholar
  7. [7]
    D.B. Kaplan, E. Katz and M. Ünsal, Supersymmetry on a spatial lattice, JHEP 05 (2003) 037 [hep-lat/0206019] [SPIRES].CrossRefADSGoogle Scholar
  8. [8]
    S. Catterall, D.B. Kaplan and M. Ünsal, Exact lattice supersymmetry, Phys. Rept. 484 (2009) 71 [arXiv:0903.4881] [SPIRES].CrossRefGoogle Scholar
  9. [9]
    P.H. Dondi and H. Nicolai, Lattice supersymmetry, Nuovo Cim. A 41 (1977) 1 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  10. [10]
    S. Nojiri, Continuous ‘translation’ and supersymmetry on the lattice, Prog. Theor. Phys. 74 (1985) 819 [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  11. [11]
    S. Nojiri, The spontaneous breakdown of supersymmetry on the finite lattice, Prog. Theor. Phys. 74 (1985) 1124 [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  12. [12]
    J. Bartels and G. Kramer, A lattice version of the Wess-Zumino model, Z. Phys. C 20 (1983) 159 [SPIRES].ADSGoogle Scholar
  13. [13]
    M. Kato, M. Sakamoto and H. So, Taming the Leibniz rule on the lattice, JHEP 05 (2008) 057 [arXiv:0803.3121] [SPIRES].CrossRefADSGoogle Scholar
  14. [14]
    G. Bergner, T. Kaestner, S. Uhlmann and A. Wipf, Low-dimensional supersymmetric lattice models, Annals Phys. 323 (2008) 946 [arXiv:0705.2212] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar
  15. [15]
    G. Bergner, Symmetries an the methods of quantum field theory: supersymmetry on a space-time lattice, Ph.D. thesis, Friedrich-Schiller-Universität Jena Jena, Jena, Germany (2009), online at
  16. [16]
    J. Wess and B. Zumino, A lagrangian model invariant under supergauge transformations, Phys. Lett. B 49 (1974) 52 [SPIRES].ADSGoogle Scholar
  17. [17]
    T. Kastner, G. Bergner, S. Uhlmann, A. Wipf and C. Wozar, Two-dimensional Wess-Zumino models at intermediate couplings, Phys. Rev. D 78 (2008) 095001 [arXiv:0807.1905] [SPIRES].ADSGoogle Scholar
  18. [18]
    G. Bergner, F. Bruckmann and J.M. Pawlowski, Generalising the Ginsparg-Wilson relation: lattice supersymmetry from blocking transformations, Phys. Rev. D 79 (2009) 115007 [arXiv:0807.1110] [SPIRES].ADSGoogle Scholar
  19. [19]
    A. D’Adda, N. Kawamoto and J. Saito, Formulation of supersymmetry on a lattice as a representation of a deformed superalgebra, arXiv:0907.4137 [SPIRES].
  20. [20]
    F. Bruckmann and M. de Kok, Noncommutativity approach to supersymmetry on the lattice: SUSY quantum mechanics and an inconsistency, Phys. Rev. D 73 (2006) 074511 [hep-lat/0603003] [SPIRES].ADSGoogle Scholar
  21. [21]
    H.B. Nielsen and M. Ninomiya, No-Go theorem for regularizing chiral fermions, Phys. Lett. B 105 (1981) 219 [SPIRES].ADSGoogle Scholar
  22. [22]
    D. Friedan, A proof of the Nielsen-Ninomiya theorem, Commun. Math. Phys. 85 (1982) 481 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  23. [23]
    T. Reisz, A power counting theorem for Feynman integrals on the lattice, Comm. Math. Phys. 116 (1988) 81 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  24. [24]
    J. Giedt, R. Koniuk, E. Poppitz and T. Yavin, Less naive about supersymmetric lattice quantum mechanics, JHEP 12 (2004) 033 [hep-lat/0410041] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  25. [25]
    S. Catterall and E. Gregory, A lattice path integral for supersymmetric quantum mechanics, Phys. Lett. B 487 (2000) 349 [hep-lat/0006013] [SPIRES].MathSciNetADSGoogle Scholar
  26. [26]
    M.F.L. Golterman and D.N. Petcher, A local interactive lattice model with supersymmetry, Nucl. Phys. B 319 (1989) 307 [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  27. [27]
    L.H. Karsten and J. Smit, The vacuum polarization with SLAC lattice fermions, Phys. Lett. B 85 (1979) 100 [SPIRES].ADSGoogle Scholar
  28. [28]
    J.M. Rabin, Perturbation theory for SLAC lattice fermions, Phys. Rev. D 24 (1981) 3218 [SPIRES].ADSGoogle Scholar
  29. [29]
    L.H. Karsten and J. Smit, Lattice fermions: species doubling, chiral invariance and the triangle anomaly, Nucl. Phys. B 183 (1981) 103 [SPIRES].CrossRefADSGoogle Scholar
  30. [30]
    H.S. Sharatchandra, The continuum limit of lattice gauge theories in the context of renormalized perturbation theory, Phys. Rev. D 18 (1978) 2042 [SPIRES].ADSGoogle Scholar
  31. [31]
    D. Kadoh and H. Suzuki, Supersymmetric nonperturbative formulation of the WZ model in lower dimensions, arXiv:0909.3686 [SPIRES].
  32. [32]
    S. Duane, A.D. Kennedy, B.J. Pendleton and D. Roweth, Hybrid Monte Carlo, Phys. Lett. B 195 (1987) 216 [SPIRES].ADSGoogle Scholar
  33. [33]
    K. Fujikawa, Supersymmetry on the lattice and the Leibniz rule, Nucl. Phys. B 636 (2002) 80 [hep-th/0205095] [SPIRES].CrossRefMathSciNetADSGoogle Scholar
  34. [34]
    S.D. Drell, M. WEinstein and S. Yankielowicz, Variational approach to strong coupling field theory. 1. \( {\phi^4} \) theory, Phys. Rev. D 14 (1976) 487 [SPIRES].ADSGoogle Scholar
  35. [35]
    S.D. Drell, M. WEinstein and S. Yankielowicz, Strong coupling field theories. 2. Fermions and gauge fields on a lattice, Phys. Rev. D 14 (1976) 1627 [SPIRES].ADSGoogle Scholar
  36. [36]
    A. Kirchberg, J.D. Lange and A. Wipf, From the Dirac operator to Wess-Zumino models on spatial lattices, Ann. Phys. 316 (2005) 357 [hep-th/0407207] [SPIRES].zbMATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Theoretisch-Physikalisches InstitutFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations