Advertisement

Akustische Kodierung quantitativer Information in Karten — Ergebnisse einer Studie zum Vergleich mit klassischen Darstellungsformen

  • Jochen SchieweEmail author
  • Beate Weninger
Akustische Kartographie

Zusammenfassung

Dieser Beitrag geht von der Kernhypothese aus, dass eine multikodale Darstellung durch Graphik und Klang eine umfangreichere und flexiblere Vermittlung von quantitativen Informationen sowie quantitativen Veränderungen in kartographischen Darstellungen ermöglicht. Zur Überprüfung dieser Hypothese wurden in einem ersten Schritt geeignete Klangvariablen zur Darstellung quantitativer Informationen analytisch selektiert. Als wichtigste Variable stellte sich die Tonhöhe heraus, die auch für die nachfolgende Konzeption und Implementierung von Klangkarten eingesetzt wurde. In einer Nutzerstudie wurden ausgewählte Aspekte der Gebrauchstauglichkeit (Usability) evaluiert und künftige Forschungsfragen abgeleitet.

Schlüsselbegriffe

Multimedia-Kartographie Sonifikation Ton-Variablen Klangkarte Usability-Studie 

Acoustic Encoding of Quantitative Information in Maps — Results of a Study Comparing with Classical Forms of Representation

Abstract

This contribution is based on the core hypothesis that a multicodal presentation through graphics and sound will enable a richer and more flexible provision of quantitative information and quantitative changes in cartographic displays. To test this hypothesis, in a first step, appropriate sound variables representing quantitative information have been selected analytically. The most important variable turned out to the pitch, which was used for the subsequent design and implementation of sound maps. In a follow-up user study, selected aspects of usability have been evaluated and future research questions have been deduced.

Keywords

multimedia cartography sonification pitch variable sound map usability study 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Blattner, M., Sumikawa, D. & Greenberg, R. (1989): Earcons and Icons: Their structure and common design principles. Human Computer Interaction, 4(1): 11–44.CrossRefGoogle Scholar
  2. Bly, S. (1982): Presenting Information in Sound. CHI ′82 Conference on Human Factors in Computer Systems, 371–375.Google Scholar
  3. Brauen, G. (2006): Designing interactive sound maps: Using scalable vector graphics. Cartographica, 41(1): 59–71.CrossRefGoogle Scholar
  4. Brewster, S.A., Wright, P.C. & Edwards, A.D.N. (1994): The design and evaluation of an auditory-enhanced scrollbar. In: Adelson, B., Dumais, S.T. & Olson, J.D. (Eds.) Conference on Human Factors in Computing Systems, 24–28 April 1994, Boston, Massachusetts, 173–179.Google Scholar
  5. Buziek, G. (2003): Eine Konzeption der kartographischen Visualisierung. Habilitationsschrift, Universität Hannover.Google Scholar
  6. Caquard, S., Brauen, G. & Wright, B. (2005): Exploring Sound Design in Cybercartography, Proceedings of the 22nd International Cartographic Conference, A Coruña, Spain.Google Scholar
  7. Daunys, G. & Lauruska, V. (2008): Sonification System of Maps for Blind. In: Pinder, S. (Ed.): Advances in Human Computer Interaction. 263–272.Google Scholar
  8. Delogu, F., Palmiero, M., Federici, S. Plaisant, C. Zhao, H. & Belardinelly, O. (2010): Non-visual exploration of geographic maps: Does sonification help? Disability and Rehabilitation: Assistive Technology, May 2012; 5(3):164–174.Google Scholar
  9. Fisher, P.F. (1994): Visualization of the reliability in classified remotely sensed images. Photogrammetric Engineering and Remote Sensing, 60(7): 905–910.Google Scholar
  10. Flowers, J.H. & Hauer, T.A. (1995): Musical versus Visual Graphs: Cross-Modal Equivalence in Perception of Time Series Data. Human Factors, 37(3): 553–569.CrossRefGoogle Scholar
  11. Gaver, W. (1989): The SonicFinder: An interface that uses auditory icons. Human Computer Interaction, 4(I): 67–94.CrossRefGoogle Scholar
  12. Goldstein, E.B. (2002): Wahrnehmungspsychologie. 2. Auflage. Spektrum-Akademischer Verlag.Google Scholar
  13. Harding, C. et al. (2002): A Multi-Sensory System for the Investigation of Geoscientific Data. Computers & Graphics, 26: 259–269.CrossRefGoogle Scholar
  14. Harrower, M. (2007): The Cognitive Limits of Animated Maps. In: Cartographica, Volume 42, Issue 4, pp. 269–277.CrossRefGoogle Scholar
  15. Jeong, W. & Gluck, M. (2003): Multimodal Geographic Information Systems: Adding Haptic and Auditory Display. Journal of the American Society for Information Science and Technology, 54(3):229–242.CrossRefGoogle Scholar
  16. Krygier, J.B. (1993): Sound and cartographic design. Videotape. Pennsylvania State University, Department of Geography.Google Scholar
  17. Krygier, J.B. (1994): Sound and Geographic visualization. In: MacEachren, A.M. & Taylor, D.R.F. (Hrsg.): Visualization in modern cartography. Pergamon-Verlag: 149–166.Google Scholar
  18. Lercher, P. (1998). Medizinisch-hygienische Grundlagen der Lärmbeurteilung. In: Kalivoda, M. T., Steiner, J. W. Taschenbuch der Angewandten Psychoakustik. (Hrsg.): ed. by, Springer Verlag, Wien: 42–102.CrossRefGoogle Scholar
  19. Lodha, S.K. et al. (1996): Visualizing geometric uncertainty of surface interpolants. Graphics Interface: 238–245.Google Scholar
  20. Lodha, S.K., Joseph, A.J. & Renteria, J.C. (1999): Audiovisual data mapping for GIS-based data: an experimental evaluation. Proceedings of the 1999 workshop on new paradigms in information visualization and manipulation in conjunction with the eighth ACM international conference on Information and knowledge management: 41–48.Google Scholar
  21. Mezrich, J., Frysinger, S. & Slivjanovski, R. (1984): Dynamic Representation of Multivariate Time Series Data, Journal of the American Statistical Association, 79(385), 34–40.CrossRefGoogle Scholar
  22. Parente, P. & Bishop, G. (2003): BATS: The Blind Audio Tactile Mapping System, Proceedings of ACM South Eastern Conference.Google Scholar
  23. Peterson, Michael P. (1995): Interactive and Animated Cartography. Prentice Hall, New Jersey.Google Scholar
  24. Riedl, A. (2000): Virtuelle Globen in der Geovisualisierung. In: Kretschmar, Ingrid und Karel Kriz (Hrsg.): Wiener Schriften zur Geographie und Kartographie, Bd. 13.Google Scholar
  25. Simons, D.J. & Ambinder, M.S. (2005): Change blindness. Current Directions in Psychological Science, 14(1): 44–48.CrossRefGoogle Scholar
  26. Woodruff, A. (2012): http://andywoodruff.com/blog/the-music-of-geography-ohio-is-a-piano/ (letzter Zugriff: 13.03.2012).
  27. Yeung, E.S. (1980): Pattern Recognition by Audio Representation of Multivariate Analytical Data. Analytical Chemistry, 52(7):1120–1123.CrossRefGoogle Scholar
  28. Zhao, H., Smith, B.K., Norman, K., Plaisant, C. & Shneiderman, B. (2004): Listening to Maps: User Evaluation of Interactive Sonifications of Geo-referenced Data. IEEE Transactions on Multimedia.Google Scholar
  29. Zhao, H., Shneiderman, B., Plaisant, C. & Lazar, J. (2008): Data sonification for users with visual impairments: A case study with geo-referenced data ACM Transactions on Computer Human Interaction 15, (1): Article 4.CrossRefGoogle Scholar

Copyright information

© Deutsche Gesellschaft für Kartographie e.V. (DGfK) 2012

Authors and Affiliations

  1. 1.HafenCity Universität HamburgHamburgDeutschland

Personalised recommendations