Advertisement

Contributions to Mineralogy and Petrology

, Volume 57, Issue 3, pp 227–244 | Cite as

Ammonium Silicate Stability Relations

  • Marie Hallam
  • Hans P. Eugster
Article
  • 1 Downloads

Abstract

A method has been developed to control ammonium fugacity, \(f_{{\text{NH}}_{3}}\), at elevated temperatures and pressures. The method uses an internal nitrogen buffer, the assemblage Cr + CrN, in conjunction with a traditional external hydrogen buffer. In this manner, all gas fugacities in the system N-O-H can be calculated.

The Cr + CrN buffer has been applied to study equilibria between buddingtonite (ammonium feldspar), ammonium muscovite, sillimanite, and quartz at a constant gas pressure of 2,000 bars. Two of the five relevant reactions were measured experimentally; from these data, it is possible to calculate isothermal sections at 500, 600, and 700° C.

Below 600° C, ammonium muscovite is stable even at extremely low levels of \(f_{{\text{NH}}_{3}}\), while buddingtonite requires \(f_{{\text{NH}}_{3}}\;\geqq\;10^4\) bars. Release of NH3 during progressive metamorphism can be achieved by three processes: thermal decomposition, dehydration, and cation exchange. Within the crust, \(f_{{\text{NH}}_{3}}\) predominates over \(f_{{\text{N}}_{2}}\) by several orders of magnitude; but on the surface, nitrogen released as NH3 by metamorphism will be oxidized to N2. Biological materials provide important intermediate storage for nitrogen compounds during the nitrogen cycle.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Material for this paper was taken in part from a Ph.D. thesis submitted by MH to the Johns Hopkins University. Work was supported by NASA grant NGR 21-001-037. Helpful discussions with L. W. R. Dicks during very early stages of this investigation, and computer advice and assistance from C.E. Ransom, are also acknowledged. We are grateful to R. Powell for pointing out errors in an earlier version.

References

  1. Abelson, P.H.: Chemical events on the primitive earth. Proc. U.S. Natl. Acad. Sci. 55, 1365–1371 (1966)CrossRefGoogle Scholar
  2. Andersen, C. A., Keil, K., Mason, B.: Silicon oxynitride: A meteoritic mineral. Science 146, 256–257 (1964)CrossRefGoogle Scholar
  3. Bannister, F.A.: Osbornite, meteoritic titanium nitride. Mineral. Mag. 26, 36–44 (1941)Google Scholar
  4. Barker, D.S.: Ammonium in alkali feldspars. Am. Mineralogist 49, 581–585 (1964)Google Scholar
  5. Barrer, R.M., Denny, P. J.: Hydrothermal chemistry of the silicates. Part IX. Nitrogeneous aluminosilicates. J. Chem. Soc. 1961, 971–982Google Scholar
  6. Barrer, R.M., Dicks, L.W.R.: Chemistry of soil minerals. Part III. Synthetic micas with substitutions of NH4 for K, Ga for Al, and Ge for Si. J. Chem. Soc. 1966, 1379–1385Google Scholar
  7. Buchwald, V.F., Scott, E.R.D.: First nitride (CrN) in iron meteorites. Nature Phys. Sci. 233. 113 1 14 (1971)Google Scholar
  8. Burnham, W. C, Holloway, J.R., Davis, N.F.: Thermodynamic properties of water to 1,000° C and 10,000 bars. Geol. Soc. Am. Spec. Papers, 132 (1969)Google Scholar
  9. Clarke, F.W., Steiger, G.: The action of ammonium chloride upon silicates. U.S. Geol. Surv. Bull. 207, 57 pp. (1902)Google Scholar
  10. Cloud, P.E.: Atmospheric and hydrologic evolution on the primitive earth. Science 160, 729–736 (1968)CrossRefGoogle Scholar
  11. Erd, R.C., White, D.E., Fahey, J.J., Lee, D.L.: Buddingtonite: An ammonium feldspar with zeolitic water. Am. Mineralogist 49, 831–850 (1964)Google Scholar
  12. Eugster, H.P.: Reduction and oxidation in metamorphism (II). 24th Intl. Geol. Congress, Section 10, p. 3–11 (1972)Google Scholar
  13. Eugster, H. P., Munoz, J.: Ammonium micas: Possible sources of atmospheric ammonia and nitrogen. Science 151, 683–686 (1966)CrossRefGoogle Scholar
  14. Eugster, H. P., Skippen, G.B.: Igneous and metamorphic reactions involving gas equilibria. In: Researches in geochemistry, Vol. 2 (P.H. Abelson, ed.), p. 492–520. New York: John Wiley 1967Google Scholar
  15. Eugster, H. P., Wones, D.R.: Stability relations of the ferruginous biotite, annite. J. Petrol. 3, 82–102 (1962)CrossRefGoogle Scholar
  16. French, B. M.: Some geological implications of equilibrium between graphite and a C− O− H gas phase at high temperatures and pressures. Rev. Geophys. 4, 223–253 (1966)CrossRefGoogle Scholar
  17. Gruner, E.: Ammonium mica synthesized from vermiculite. Am. Mineralogist 24, 428–433 (1939)Google Scholar
  18. Hallam, M.: Chemical reduction of protoplanetary surface temperatures and protoatmosphere formation. Trans. Am. Geophys. Union 52, 263 (abstract) (1971)Google Scholar
  19. Hallam, M.: Evolution of primitive terrestrial atmospheres. Ph.D. Thesis, The Johns Hopkins University, Baltimore, Maryland (1973)Google Scholar
  20. Hallam, M., Eugster, H.P.: Ammonium silicate stability relations. E+S, 55, 452 (abstract) (1974)Google Scholar
  21. Hallam, M., Marcus, A. H.: Initial surface temperatures of terrestrial protoplanets and the origins of primitive atmospheres. Trans. Am. Geophys. Union 51, 344 (abstract) (1970)Google Scholar
  22. Hanks, T. C, Anderson, D. L.: The early thermal history of the earth. Phys. Earth Planet. Interiors 2, 19–29 (1969)CrossRefGoogle Scholar
  23. Hanks, T.C., Anderson, D.L.: Formation of the earth’s core. Nature 237, 387–388 (1972)CrossRefGoogle Scholar
  24. Holland, H.D.: Model for the evolution of the earth’s atmosphere. In: Petrologic Studies, Buddington volume. Geol. Soc. Am., pp. 447–477 (1962)Google Scholar
  25. Holland, H.D.: On the chemical evolution of the Terrestrial and Cytherean atmospheres. In: The origin and evolution of atmospheres and oceans (P. F. Brancazio and A. G. W. Cameron, eds.), p. 86–101. New York: John Wiley 1964Google Scholar
  26. Holloway, J. R., Reese, R.L.: The generation of N2−CO2−H2O fluids for use in hydrothermal experimentation. I. Experimental method and equilibrium calculations in the C−O−H−N system. Amer. Mineralogist 59, 587–597 (1974)Google Scholar
  27. Hougen, O. A., Watson, K.M.: Chemical process principles charts. New York: John Wiley 1946Google Scholar
  28. Hougen, O.A., Watson, K. M.: Generalized compressibility factors. Chap. 12. In: Chemical process principles, Vol. 2 of Thermodynamics, p. 479–537. New York: John Wiley 1947Google Scholar
  29. Huebner, J.S.: Buffering techniques for hydrostatic systems at elevated pressures. In: Research techniques for high pressures and high temperatures (G. Ulmer, ed.), p. 123–178. Berlin-Heidelberg New York: Springer 1971CrossRefGoogle Scholar
  30. Janaf (Joint Army, Navy, Air Force) Thermochemical Tables: Dow Chemical Co., Midland, Michigan. Natl. Bur. Standards, NSRDS-NBS 37. Washington: U.S. Govt. Printing Office 1971Google Scholar
  31. Keil, K., Andersen, C. A.: Occurrences of sinoite, Si2N2O, in meteorites. Nature 207, 745 (1965)CrossRefGoogle Scholar
  32. Kesson, S.E., Holloway, J. R.: The generation of N2−CO2−H2O fluids for use in hydrothermal experimentation. II. Melting of albite in a multispecies fluid. Am. Mineralogist 59, 598–603 (1974)Google Scholar
  33. Levinson, A.A., Day, J.J.: Low temperature hydrothermal synthesis of montmorillonite, ammonium micas and ammonium zeolites. Earth Planet. Sci. Lett. 5, 52–54 (1968)CrossRefGoogle Scholar
  34. Maskelyne, N. S.: On the mineral constituents of meteorites. Phil. Trans. Roy. Soc. London 160, 189–214 (1870)CrossRefGoogle Scholar
  35. McGovern, W.E.: The primitive earth: Thermal models of the upper atmosphere for a methanedominated environment. J. Atmospher. Sci. 26, 623–635 (1969)CrossRefGoogle Scholar
  36. Miller, S.L.: Production of amino acids under possible primitive earth conditions. Science 117, 528–529 (1953)CrossRefGoogle Scholar
  37. Miller, S.L., Urey, H. C.: Organic compound synthesis on the primitive earth. Science 130, 245–251 (1959)CrossRefGoogle Scholar
  38. Newton, R.H.: Activity coefficients of gases. Ind. Eng. Chem. 27, 302–306 (1935)CrossRefGoogle Scholar
  39. Oparin, A. I.: Origin of life, 270 pp. London: MacMillan 1938. Reprinted by Dover, N.Y. (1953)Google Scholar
  40. Power, J. F., Bond, J. J., Sandoval, F. M., Willis, W. O.: Nitrification in Paleocene shale. Science 183, 1077–1079 (1974)CrossRefGoogle Scholar
  41. Presnall, D. C.: Pressure-volume-temperature measurements on hydrogen from 200° to 600° C and up to 1800 atmospheres. J. Geophys. Res. 74, 6026–6033 (1969)CrossRefGoogle Scholar
  42. Ramdohr, P.: The opaque minerals in stony meteorites, 243 pp. New York: Elsevier 1973Google Scholar
  43. Rasool, S.I., McGovern, W.E.: Primitive atmosphere of the earth. Nature 212, 1225–1226 (1966)CrossRefGoogle Scholar
  44. Rubey, W. W.: Geologic history of sea water—An attempt to state the problem. Geol. Soc. Am. Bull. 62, 1111–1148 (1951)CrossRefGoogle Scholar
  45. Rubey, W. W.: Development of the hydrosphere and atmosphere, with special reference to the probable composition of the early atmosphere. Geol. Soc. Am. Spec. Papers 62, 631–650 (1955)CrossRefGoogle Scholar
  46. Sagan, C.: Origins of the atmospheres of the earth and planets. In: International dictionary of geophysics, Vol. 1 (S.K. Runcorn, ed.), p. 97–104. N.Y.: Pergamon Press 1967Google Scholar
  47. Sagan, C., Mullen, G.: Earth and Mars: Evolution of atmosphere and surface temperatures. Science 177, 52–56 (1972)CrossRefGoogle Scholar
  48. Schachtschabel, P.: Untersuchungen iiber die Sorption der Tonmineralien und organischen Bodenkolloide. Kolloid-Beihefte 51, 199–276 (1940)Google Scholar
  49. Schneider, E.A., Clarke, F. W.: Notes on the action of ammonium chloride upon silicates. U.S. Geol. Surv. Bull. 113, 34–36 (1893)Google Scholar
  50. Shaw, H. R., Wones, D. R.: Fugacity coefficients for hydrogen gas between 0° and 1000° C, for pressures to 3000 atm. Am. J. Sci. 262, 918–929 (1963)CrossRefGoogle Scholar
  51. Stevenson, F. J.: On the presence of fixed ammonia in rocks. Science 159, 221–222 (1959)CrossRefGoogle Scholar
  52. Urey, H.C.: Primitive planetary atmospheres and the origin of life. In: The origin of life on earth (Symp. Intl. Union Biochem., Moscow, 1957), p. 16–22. New York: Macmillan 1959Google Scholar
  53. Wicks, C.E., Block, F.E.: Thermodynamic properties of 65 elements—Their oxides, halides, carbides and nitrides. U.S. Bur. Mines Bull. 605, 146 pp. Washington: U.S. Govt. Printing Office 1963Google Scholar
  54. Wlotzka, F.: Nitrogen. In: Handbook of geochemistry, Vol. 11, Chapter 7 (K.H. Wedepohl, ed.), B-l-0-3. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  55. Zen, E-an: The zeolite facies: An interpretation. Am. J. Sci. 259, 401–409 (1961)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Marie Hallam
    • 1
  • Hans P. Eugster
    • 2
  1. 1.BaltimoreUSA
  2. 2.Department of Earth and Planetary SciencesThe Johns Hopkins UniversityBaltimoreUSA

Personalised recommendations