Advertisement

Journal of Rubber Research

, Volume 21, Issue 3, pp 224–235 | Cite as

The Sugar and Polyol Composition of Hevea Brasiliensis Latex Depends on the Clonal Origin of the Tree

  • S. Bellacicco
  • A. Prades
  • C. Char
  • L. Vaysse
  • F. Granet
  • R. Lacote
  • E. Gohet
  • A. Flori
  • J. Sainte Beuve
  • F. BonfilsEmail author
Article
  • 2 Downloads

Abstract

The variability of natural rubber (NR) properties has been partly ascribed to the 3 to 5% non-isoprene components (lipids, proteins, carbohydrates and minerals) present in NR. Of all the factors that might be held responsible for this variability, clonal origin has appeared to be prominent. The sugars and polyols of latex from five Hevea brasiliensis clones (RRIM600, GT1, PB235, PB260 and PB217) were extracted with ethanol after specific NR sample pretreatment in a cyclohexane/ethanol solution. Latex carbohydrates were characterised by high performance anion-exchange chromatography equipped with a pulsed amperometric detector (HPAE-PAD). Total extractable carbohydrates, single sugars and polyols were analysed for each clone to evaluate how clonal origin affected the variability of latex carbohydrate compositions. Significant clonal differences were identified, both in the total sugar and polyol contents of the latex, and in the quantity of each element. The differences between the latex extracts of clones GT1, PB217, PB260, PB235 and RRIM600 did not come solely from the presence of major carbohydrates, such as quebrachitol or sucrose, but also effectively from minor carbohydrates, such as sorbitol or galactose. Some minor carbohydrates could even be used as biochemical clone indicators.

Keywords

Natural rubber latex Hevea brasiliensis clone carbohydrates sugars polyols 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    IRSG (2016) International Rubber Study Group (IRSG) Rubber Industry Report.Google Scholar
  2. 2.
    Le ROUX, Y., EHABE E.E, SAINTE-BEUVE J, NKENGAFAC J, NKENG G.E, NGOLEMASANGO F AND GOBINA, S.M. (2000) Seasonal and Clonal Variation in the Latex and Raw Rubber of Hevea brasiliensis. J. Rubb. Res., 3, 142–156.Google Scholar
  3. 3.
    MORENO, R. M. B., FERREIRA, M., GONÇALVES, P. D. S. AND MATTOSO, L. H. C. (2005) Technological Properties of Latex and Natural Rubber of Hevea brasiliensis Clones. Sci. Agric., 62, 122–126.CrossRefGoogle Scholar
  4. 4.
    ROLERE, S., CARTAULT, M., SAINTE BEUVE, J. AND BONFILS, F. (2017) A Rheological Method Exploiting Cole-Cole Plot Allows Gel Quantification in Natural Rubber. Polym. Test., 61, 378–385.CrossRefGoogle Scholar
  5. 5.
    GEORGE, K. M., SEBASTIEN, T., JOSEPH, R., THOMAS, K.T., NAIR R.B. AND SARAS-ATH-ARNMA, C.K. (2004) Characterization of Latex and Rubber from Selected Hevea brasiliensis Clones. Rubb. Sci., 17, 23–33.Google Scholar
  6. 6.
    HAQUE, M. E., DAFADER, N. C., AKHTAR, F. AND AHMAD, M. U. (1995) Influence of the Variation of Latex Clone on the Mechanical Properties of the Radiation Vulcanized Natural Rubber Latex Film. Radiat Phys. Chem., 46, 119–122.CrossRefGoogle Scholar
  7. 7.
    LIENGPRAYOON, S., CHAIYUT, J., SRIROTH, K., BONFILS, F., SAINTE BEUVE, J., DUBREUCQ, E. AND VAYSSE, L. (2013) Lipid Compositions of Latex and Sheet Rubber from Hevea brasiliensis Depend on Clonal Origin. Eur. J. Lipid Sci. Tech., 115, 1021–1031.CrossRefGoogle Scholar
  8. 8.
    YIP, E. (1990) Clonal Characterization of Latex and Rubber Properties. J. Nat. Rubb. Res., 5, 52–80.Google Scholar
  9. 9.
    VAYSSE, L., BONFILS, F., SAINTE BEUVE, J. AND CARTAULT, M. (2012) “Natural Rubber”, in Polymer Science, A Comprehensive Reference, (eds) K. MATYJASZEWSKI AND M. MÖLLER, Amsterdam: Elsevier BV. 281–293.CrossRefGoogle Scholar
  10. 10.
    TANAKA, Y. AND TARACHIWIN, L. (2009) Recent Advances in Structural Characterization of Natural Rubber. Rubb. Chem. Technol., 82, 283–314.CrossRefGoogle Scholar
  11. 11.
    WISUNTHORN, S., LIENGPRAYOON, S., VAYSSE, L., SAINTE BEUVE, J. AND BONFILS, F. (2012) SEC-MALS Study of Dynamic Structuring of Natural Rubber: Comparative Study of Two Hevea brasiliensis Genotypes. J. Appl. Polym. Sci., 124, 1570–1577.CrossRefGoogle Scholar
  12. 12.
    KAWAHARA, S., NISHIYAMA, N., KAKUBO, T. AND TANAKA, Y. (1996) Origin of Characteristic Properties of Natural Rubber — Synergistic Effet of Fatty Acids on Crystallization of Cis-1,4-Polyisoprene: II Mixed and Esterified Fatty Acids in Natural Rubber. Rubb. Chem. Technol., 69, 609–614.CrossRefGoogle Scholar
  13. 13.
    TOKI, S.B.C., HSIAO, B.S., AMNUAYPORNSRI, S., SAKDAPIPANICH, J. AND TANAKA, Y. (2008) Multi-Scaled Microstructures in Natural Rubber Characterized by Synchrotron X-Ray Scattering and Optical Microscopy. J. Polym. Sci.: Part B: Polym. Physics., 46, 2456–2464.CrossRefGoogle Scholar
  14. 14.
    D’AUZAC, J., JACOB, J. L. AND CHRESTIN, H. (1989) Physiology of Rubber Tree Latex, Floride: CRC Press, Boca Raton.Google Scholar
  15. 15.
    NAIR, N. U., THOMAS M., SREELATHA S., SIMON S.P., VIJAYAKUMAR K.R AND GEORGE P.J. (1993) Clonal Variation in Lipid Composition in the Latex of Hevea brasiliensis and Its Implication in Latex Production. Rubb. Sci., (former Indian J. Nat. Rubb. Res.). 6, 143.Google Scholar
  16. 16.
    YEANG, H., Y, GHANDIMATHI, H. AND PARANJOTHY, H. (1977) Protein and Enzyme Variation in Some Hevea Cultivars. J. Rubb. Res. Inst. Malaysia. 25, 9–18.Google Scholar
  17. 17.
    D’AUZAC, J., JACOB, J. L., PRÉVOT, J. C., CLÉMENT, A., GALLOIS, R., CHRESTIN, H., LACOTE, R., PUJADE-RENAUD, V. AND GOHET, E. (1997) “The Regulation of Cis-Polyisoprene Production (Natural Rubber) from Hevea brasiliensis”, in Recent Research Developments in Plant Physiology, [ed] PANDALAI S., Trivandrum: Research Singpost. 273–332.Google Scholar
  18. 18.
    CHANTUMA, P., LACOTE, R., LECONTE, A. AND GOHET, E. (2011) An Innovative Tapping System, the Double Cut Alternative, to Improve the Yield of Hevea brasiliensis in Thai Rubber Plantations. Field Crop Res., 121, 416–422.CrossRefGoogle Scholar
  19. 19.
    ESCHBACH, J. M., ROUSSEL, D., VAN DE SYPE, H., JACOB, J. L. AND D’AUZAC, J. (1984) Relationships Between Yield and Clonal Physiological Characteristics of Latex from Hevea brasiliensis. Physiol. Veg., 22, 295–304.Google Scholar
  20. 20.
    GOHET, E., PREVOT, J. C., ESCHBACH, J. M., CLEMENT, A. AND JACOB, J. L. (1996) Hevea Latex Production, Relationship with Tree Growth, Influence of Clonal Origin and Ethrel Stimulation. Symposium on Physiological and Molecular Aspects of the Breeding of Hevea brasiliensis, Penang, Malaysia, 6–7 November 1995, 200–210.Google Scholar
  21. 21.
    LOW, F. C. (1978) Distribution and Concentration of Major Soluble Carbohydrates in Hevea Latex the Effects of Ethephon Stimulation and the Possible Role of These Carbohydrates in Latex Flow. J. Rubb. Res. Inst. Malaysia. 26, 21–32.Google Scholar
  22. 22.
    VIJAYAKUMAR, K., GOHET, E., THOMAS, K., XIAODI, W., SUMARMADJI, R., THANH, D., SOPCHOKE, P., KARUNAICHAMY, K. AND MOHD AKBAR, M. (2009) Revised International Notation for Latex Harvest Technology. J. Rubb. Res., 12, 103–115.Google Scholar
  23. 23.
    GIBERT, O., DUFOUR, D., REYNES, M., PRADES, A., MORENO ALZATE, L., GIRALDO, A., ESCOBAR, A. AND GONZÁLEZ, A. (2013) Physicochemical and Functional Differentiation of Dessert and Cooking Banana During Ripening — A Key for Understanding Consumer Preferences. Acta Hortic., 986, 269–286.CrossRefGoogle Scholar
  24. 24.
    VALENTE, M., PRADES, A. AND LAUX, D. (2013) Potential Use of Physical Measurements Including Ultrasound for a Better Mango Fruit Quality Characterization. J. Food Eng., 116, 57–64.CrossRefGoogle Scholar
  25. 25.
    DUSOTOIT-COUCAUD, A., PORCHERON, B., BRUNEL, N., KONGSAWADWORAKUL, P., FRANCHEL, J., VIBOONJUN, U., CHRESTIN, H., LEMOINE, R. AND SAKR S. (2009) Cloning and Characterization of a New Polyol Transporter (HbPLT2) in Hevea brasiliensis. Plant Cell Physiol., 51, 1878–1888.CrossRefGoogle Scholar
  26. 26.
    LACOTE, R., GABLA, O., OBOUAYEBA, S., ESCHBACH, J., RIVANO, F., DIAN, K. AND GOHET, E. (2010) Long-Term Effect of Ethylene Stimulation on the Yield of Rubber Trees is Linked to Latex Cell Biochemistry. Field Crops Res., 115, 94–98.CrossRefGoogle Scholar
  27. 27.
    LACROTTE, R. (1991) Etude des relations entre la teneur en sucres du latex et la production: approche des mécanismes du chargement en saccharose des laticifères d’Hevea brasiliensis muell. Arg., Montpellier University, PhD Thesis, Montpellier, France.Google Scholar
  28. 28.
    GALLOIS, R. PREVOT, J.C., CLEMENT, A. AND JACOB, J.L. (1996) Purification and Characterization of an Adenine Phosphoribosyltransferase from Rubber Tree Latex. Physiological Implications. Plant Physiol. Biochem., 34, 527–537.Google Scholar
  29. 29.
    PRIYADARSHAN, P. M. (2011) Biology of Hevea Rubber, CABI, Wallingford, United Kingdom.CrossRefGoogle Scholar
  30. 30.
    SERRES, E., LACROTTE, R., PREVOT, J. C., CLEMENT, A., COMMERE, J. AND JACOB, J. L. (1994) Metabolic Aspects of Latex Regeneration in situ for Three Hevea Clones. Indian J. Nat. Rubb. Res., 7, 79–88.Google Scholar
  31. 31.
    YANG, B., ZHENG, J. AND KALLIO, H. (2011) Influence of Origin, Harvesting Time and Weather Conditions on Content of Inositols and Methylinositols in Sea Buckthorn (Hippophaë rhamnoides) Berries. Food Chem., 125, 388–396.CrossRefGoogle Scholar
  32. 32.
    STINSON, E., DOOLEY, C., PURCELL, J. AND ARD, J. (1967) Quebrachitol-a New Component of Maple Sap and Sirup. J. Agric. Food Chem., 15, 394–397.CrossRefGoogle Scholar
  33. 33.
    LOEWUS, F. AND MURTHY, P. (2000) Review Myo-Inositol Metabolism in Plants. Plant Sci., 150, 1–19.CrossRefGoogle Scholar

Copyright information

© The Malaysian Rubber Board 2018

Authors and Affiliations

  • S. Bellacicco
    • 1
    • 4
  • A. Prades
    • 2
    • 3
  • C. Char
    • 1
  • L. Vaysse
    • 1
  • F. Granet
    • 4
  • R. Lacote
    • 5
  • E. Gohet
    • 6
  • A. Flori
    • 5
  • J. Sainte Beuve
    • 1
  • F. Bonfils
    • 1
    Email author
  1. 1.CIRAD, UMR IATEMontpellierFrance
  2. 2.CIRAD, UMR QualisudMontpellierFrance
  3. 3.Qualisud, Université de Montpellier, CIRAD, Montpellier SupAgro, Université d’Avignon, Université de La RéunionMontpellierFrance
  4. 4.MFP MICHELINClermont FerrandFrance
  5. 5.CIRAD, UPR Systèmes de Pérennes, Kasetsart University, ChatuchakBangkokThailand
  6. 6.CIRAD, UPR Systèmes de PérennesMontpellierFrance

Personalised recommendations