Advertisement

Journal of Rubber Research

, Volume 21, Issue 2, pp 94–118 | Cite as

Preparation and Characterisation of Natural Rubber Composites Comprising Hybrid Fillers of Activated Carbon / in situ Synthesised Magnetite

  • A. A. Al-Ghamdi
  • O. A. Al-Hartomy
  • F. R. Al-Solamy
  • N. DishovskyEmail author
  • R. Nickolov
  • M. Mihaylov
  • P. Malinova
  • K. Ruskova
Article
  • 2 Downloads

Abstract

The aim of this study was to examine the influence of hybrid fillers based on activated carbon/nanoscale magnetite synthesised in situ on the curing, mechanical and dynamic characteristics, electrical and thermal conductivities, dielectric characteristics and homogeneity of natural rubber based composites. The fillers have been characterised by X-ray diffraction and X-ray photoelectron spectroscopy establishing the influence of the magnetite layer on the texture characteristics. It has been found that magnetite amount changes the texture characteristics of activated carbon. The increasing amount of deposited magnetite hinders the vulcanisation process and loosens the vulcanisation network. The elongation at break and residual elongation increase, while Shore A hardness and the modulus 100 decrease. The storage modulus decreases, while the mechanical loss angle tangent increases together with the dielectric constant and the dielectric loss angle tangent also get higher. The thermal conductivity coefficient and homogeneity increase at higher magnetite amounts.

Keywords

Natural rubber hybrid fillers activated carbon magnetite dielectric properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    GHASEMI, A., LIU, X. AND MORISAKO, A. (2007) Magnetic and Microwave Absorption Properties of BaFe12–x, (Mn0.5Cu0.5Zr)x/2O19 synthesized by sol-gel processing. J. Magn. Magn. Mater., 316(2), e105–e108.CrossRefGoogle Scholar
  2. 2.
    YUSOFF, A. N., ABDULLAH, M. H., AHMAD, S. H., JUSOH, S. F., MANSOR, A. A. AND HAMID, S. A. A. (2002) Electromagnetic and Absorption Properties of Some Microwave Absorbers. J. Appl. Phys, 92(2), 876–882.CrossRefGoogle Scholar
  3. 3.
    MOTTAHED, B. D. AND MANOOCHEHRI, S. (1995) A Review of Research in Materials, Modeling and Simulation, Design Factors, Testing, and Measurements Related to Electromagnetic Interference Shielding. Polym. Plast. Technol. Eng., 34(2), 271–346.CrossRefGoogle Scholar
  4. 4.
    LAKSHMI, K., JOHN, H., MATHEW, K. T., JOSEPH, R. AND GEORGE, K. E. (2009) Microwave Absorption, Reflection and Emi Shielding of PU-PANI Composite. Acta Mater., 57(2), 371–375.CrossRefGoogle Scholar
  5. 5.
    KAYNAK, A., POLAT, A. ANDYILMAZER, U. (1996) Some Microwave and Mechanical Properties of Carbon Fiber — Polypropylene and Carbon Black — Polypropylene Composites. Mater. Res. Bull., 31(10), 1195–1206.CrossRefGoogle Scholar
  6. 6.
    LU, G., LI, X. AND JIANG, H. (1996) Electrical and Shielding Properties of ABS Resin Filled with Nickel — Coated Carbon Fibers. Compos. Sci. Technol., 56(2), 193–200.CrossRefGoogle Scholar
  7. 7.
    RAHAMAN, M., CHAKI, T. K. AND KHASTGIR, D. (2011) Development of High Performance EMI Shielding Material from EVA, NBR, and their Blends: Effect of Carbon Black Structure. J. Mater. Sci., 46(11), 3989–3999.CrossRefGoogle Scholar
  8. 8.
    CHUNG, D. D. L. (2001) Electromagnetic Interference Shielding Effectiveness of Carbon Materials. Carbon, 39(2), 279–285.CrossRefGoogle Scholar
  9. 9.
    CHIANG, W.-Y. AND CHENG, K.-Y. (1997) Processing Conditions for Electromagnetic Interference Shielding Effectiveness and Mechanical Properties of Acrylonitrile — Butadiene — Styrene based Composites. Polym. Compos., 18(6), 748–756.CrossRefGoogle Scholar
  10. 10.
    BARBA, A. A., LAMBERTI, G., D’AMORE, M. AND ACIERNO, D. (2006) Carbon black/Silicone Rubber Blends as Absorbing Materials to Reduce Electro Magnetic Interferences (EMI). Polym. Bull., 57(4), 587–593.CrossRefGoogle Scholar
  11. 11.
    KRISHNAN, Y., CHANDRAN, S., USMAN, N., SMITHA, T. R., PARAMESWARAN, P. S. AND PREMA, K. H. (2015) Processability, Mechanical and Magnetic Studies on Natural Rubber — Ferrite Composites. Int. J. Chem. Stud, 3(1), 15–22.Google Scholar
  12. 12.
    ISMAIL, H., SAM, S. T., MOHD NOOR, A. F. AND BAKAR, A. A. (2007) Properties of Ferrite — filled Natural Rubber Composites. Polym. Plast. Technol. Eng., 46(6), 641–650.CrossRefGoogle Scholar
  13. 13.
    KONG, I., HJ AHMAD, S., HJ ABDULLAH, M., HUI, D., NAZLIM YUSOFF, A. AND PURYANTI, D. (2010) Magnetic and Microwave Absorbing Properties of Magnetite-thermoplastic Natural Rubber Nanocomposites. J. Magn. Magn. Mater., 322(21), 3401–3409.CrossRefGoogle Scholar
  14. 14.
    UROGIOVA, E., HUDEC, I. AND BELLUSOVA, D. (2006) Magnetic and Mechanical Properties of Strontium Ferrite — rubber Composites. Kautsch. Gummi Kunstst. 5(0), 224–228.Google Scholar
  15. 15.
    SHTARKOVA, R. AND DISHOVSKY, N. (2009) Elastomer — Based Microwave Absorbing Materials. J. Elastom. Plast., 41(2), 163–174.CrossRefGoogle Scholar
  16. 16.
    DISHOVSKY, N. AND GRIGOROVA, M. (2000) On the Correlation between Electromagnetic Waves Absorption and Electrical Conductivity of Carbon Black Filled Polyethylenes. Mater. Res. Bull., 35(3), 403–409.CrossRefGoogle Scholar
  17. 17.
    ZHANG, C.-S., NI, Q.-Q., FU, S.-Y. AND KURASHIKI, K. (2007) Electromagnetic Interference Shielding Effect of Nanocomposites with Carbon Nanotube and Shape Memory Polymer. Compos. Sci. Technol., 67(14), 2973–2980.CrossRefGoogle Scholar
  18. 18.
    ATTHARANGSAN, S., ISMAIL, H., BAKAR, M. A. AND ISMAIL, J. (2012) Carbon Black (CB)/Rice Husk Powder (rhp) Hybrid Filler — filled Natural Rubber Composites: Effect of CB/RHP Ratio on Property of the Composites. Polym. Plast. Technol. Eng., 51(7), 655–662.CrossRefGoogle Scholar
  19. 19.
    LING, Q., SUN, J., ZHAO, Q. AND ZHOU, Q. (2011) Effects of Carbon Black Content on Microwave Absorbing and Mechanical Properties of Linear Low Density Polyethylene/Ethylene — octene Copolymer/ Calcium Carbonate Composites. Polym. Plast. Technol. Eng., 50(1), 89–94.CrossRefGoogle Scholar
  20. 20.
    DAS, T. K. AND PRUSTY, S. (2012) Review on Conducting Polymers and Their Applications. Polym. Plast. Technol. Eng., 51(14), 1487–1500.CrossRefGoogle Scholar
  21. 21.
    CHANDRAN, A. S., NARAYANANKUTTY, S. K. AND MOHANAN, P. (2011) Microwave Characteristics of Polyaniline Based Short Fiber Reinforced Chloroprene Rubber Composites. Polym. Plast. Technol. Eng., 50(5), 453–458.CrossRefGoogle Scholar
  22. 22.
    DISHOVSKY, N. (2009) Rubber Based Composites with Active Behaviour to Microwaves (review). J. Univ. Chem. Technol. Metallurgy., 44(2), 115–122.Google Scholar
  23. 23.
    RADOVIC, L. R. AND RODRIGUES-REINOSO, F. (1996) Chemistry and Physics of Carbon. New York: Marcel Dekker, 254.Google Scholar
  24. 24.
    RODRÍGUEZ-REINOSO, F. (1998) The Role of Carbon Materials in Heterogeneous Catalysis. Carbon, 36(3), 159–175.CrossRefGoogle Scholar
  25. 25.
    DONNET, J.-B. AND CUSTODERO, E. (2013) in: The Science and Technology of Rubber (4th Edition) (eds) MARK, J. E., ERMAN, B. and ROLAND, C. M., Boston: Academic Press, 383–416.CrossRefGoogle Scholar
  26. 26.
    DICK, J. S. (2001) Rubber Technology: Compounding and Testing for Performance, Munich: Hanser Publishers.Google Scholar
  27. 27.
    AL-SEHEMI, A. G., AL-GHAMDI, A. A., DISHOVSKY, N., NICKOLOV, R. N., ATANASOV, N. T. AND MANOILOVA, L. T. (2017) Effect of Activated Carbons on the Dielectric and Microwave Properties of Natural Rubber Based Composites. Mat. Res., 20(0), 1211–1220.CrossRefGoogle Scholar
  28. 28.
    AL-GHAMDI AHMED, A., AL-HARTOMY OMAR, A., AL-SOLAMY, F., DISHOVSKY, N., MALINOVA, P. AND SHTARKOVA, R. (2016) Microwave Properties of Natural Rubber Based Composites Containing Carbon Black — Magnetite Hybrid Fillers. Sci. Eng. Comp. Mat., in press.Google Scholar
  29. 29.
    MUNIRAH, N. R., NORIMAN, N. Z., SALIHIN, M. Z., KAMARUDDIN, H., FATIN, M. H., SAM, S. T., MUSTAFA AL BAKRI, A. M. AND ROSNIZA, H. (2016) The Effects on Cure Characteristics, Physico — mechanical Properties and Morphology of Bamboo Activated Carbon Filled Styrene Butadiene Rubber (SBR) Vulcanisates. Key Eng. Mater., 673(0), 131–140.CrossRefGoogle Scholar
  30. 30.
    YUVARAJ, P., RAO, J. R., FATHIMA, N. N., NATCHIMUTHU, N. AND MOHAN, R. (2018) Complete Replacement of Carbon Black Filler in Rubber Sole with CaO Embedded Activated Carbon Derived from Tannery Solid Waste. Journal of Cleaner Production. 170(Supplement C), 446–450.CrossRefGoogle Scholar
  31. 31.
    AL-GHAMDI, A. A., AL-HARTOMY, O. A., AL-SOLAMY, F. R., DISHOVSKY, N., NICKOLOV, R., ATANASOV, N. AND RUSKOVA, K. (2017) Effect of Activated Carbon/In Situ Synthesized Magnetite Hybrid Fillers on the Microwave Properties of Natural Rubber Composites. Adv. Mat. Proc, 2(10), 621–628.CrossRefGoogle Scholar
  32. 32.
    KARYAKIN, Y. V. AND ANGELOV, I. I. (1974) Pure Chemical Substances (in Russian), Moscow: Chemistry.Google Scholar
  33. 33.
    DUBININ, M. M. AND ASTAKHOV, V. A. (1971) Description of Adsorption Equilibria of Vapors on Zeolites Over Wide Ranges of Temperature and Pressure. Adv. Chem. Series., 102(0), 69–85.CrossRefGoogle Scholar
  34. 34.
    SING, K. S. W. (1969) in: Surface Area Determination (eds) EVERETT, D. H. and OTTEWILL, R. H. London: Butterwoths, 25.Google Scholar
  35. 35.
    NOH, J. S. AND SCHWARZ, J. A. (1990) Effect of HNO3 Treatment on the Surface Acidity of Activated Carbons. Carbon., 28(5), 675–682.CrossRefGoogle Scholar
  36. 36.
    NEPHEDOV, V. I. (1984) Handbook of X — Ray Photoelectron Spectroscopy of Chemical Compounds (in Russian), Moscow: Chemistry.Google Scholar
  37. 37.
    ROSSIN, J. A. (1989) XPS Surface Studies of Activated Carbon. Carbon, 27(4), 611–613.CrossRefGoogle Scholar
  38. 38.
    CORAN, A. Y. (2013) in: The Science and Technology of Rubber (4th edition) (eds) MARK, E., ERMAN, B. and ROLAND, M. Boston: Academic Press, 337–381.CrossRefGoogle Scholar
  39. 39.
    KRUŽELÁK, J., UŠAKOVÁ, M., DOSOUDIL, R., HUDEC, I. AND SÝHORA, R. (2014) Microstructure and Performance of Natural Rubber Based Magnetic Composites. Polym. Plast. Technol. Eng., 53(11), 1095–1104.CrossRefGoogle Scholar
  40. 40.
    AL-GHAMDI, A. A., AL-HARTOMY, O. A., AL-SOLAMY, F., DISHOVSKY, N., ZAIMOVA, D., MALINOVA, P. AND NIHTIANOVA, D. (2016) Preparation and Characterisation of Natural Rubber Composites Comprising Conductive Carbon Black/Magnetite Hybrid Fillers Obtained by Impregnation Technology. Polym. Plast. Technol. Eng., in press.Google Scholar
  41. 41.
    ANSAR, M. Z., ATIQ, S., ALAMGIR, K. AND NADEEM, S. (2014) Frequency and Temperature Dependent Dielectric Response of Fe3O4 Nano — crysatallites. J. Sci. Res., 6(6), 399–406.CrossRefGoogle Scholar
  42. 42.
    CULLITY, B. D. (1972) Introduction to Magnetic Materials, New York: Addison — Wesley.Google Scholar
  43. 43.
    MAXWELL, J. C. (2010) A Treatise on Electricity and Magnetism, New York: Cambridge University Press.CrossRefGoogle Scholar
  44. 44.
    WAGNER, K. W. (1913) Zur Theorie der unvollkommenen Dielektrika. Ann. Phys., 345(5), 817–855.CrossRefGoogle Scholar
  45. 45.
    RAHMAN, M. M., HALDER, P. K., AHMED, F., HOSSAIN, T. AND RAHAMAN, M. (2012) Effect of Ca — Substitution on the Magnetic and Dielectric Properties of Mn — Zn Ferrites. J. Sci. Res., 4(2), 297–306.CrossRefGoogle Scholar
  46. 46.
    MU, G., CHEN, N., PAN, X., SHEN, H. AND GU, M. (2008) Preparation and Microwave Absorption Properties of Barium Ferrite Nanorods. Mater. Lett., 62(6), 840–842.CrossRefGoogle Scholar
  47. 47.
    KĀZĀ, I., SHIGEHISA, Y., YOSHICHIKA,, TETSUYA, H., NAOKAZU, K., TOSHIO, T. AND SYĀJI, F. (1971) Dielectric Properties of the Mixtures of α — Fe2O3, TiO2 and Fe2TiO5. Jpn. J. Appl. Phys., 10(11), 1513.CrossRefGoogle Scholar
  48. 48.
    MAHARRAMOV, A. M., RAMAZANOV, M. A., ALIZADE, R. A. AND ASILBEYLI, P. B. (2013) Structure and Dielectric Properties of nanocomposites on the basis of polyethylene with Fe3O4 nanoparticles. Dig. J. Nanomater. Bias, 8(4), 1447–1454.Google Scholar
  49. 49.
    KUWAGAKI, H., MEGURO, T., TATAMI, J., KOMEYA, K. AND TAMURA, K. (2003) An Improvement of Thermal Conduction of Activated Carbon by Adding Graphite. J. Mater. Sci., 38(15), 3279–3284.CrossRefGoogle Scholar
  50. 50.
    NODA, Y. AND NAITO, K. (1978) The Thermal Conductivity and Diffusivity of MnxFe3 + xO4 from 200 to 700K. Netsu Sokutei. 5(1), 11–18.Google Scholar
  51. 51.
    LU, W. AND CHUNG, D. D. L. (2001) Preparation of Conductive Carbons with High Surface Area. Carbon, 39(1), 39–44.CrossRefGoogle Scholar
  52. 52.
    BLANEY, L. (2007) Magnetite (Fe3O4): Properties, Synthesis, and Applications. Lehigh University. 15, Paper 5: https://doi.org/www.preserve.lehigh.edu.Google Scholar
  53. 53.
    BOTROS, S. H., MOUSTAFA, A. F. AND IBRAHIM, S. A. (2006) Homogeneous Styrene Butadiene/Acrylonitrile Butadiene Rubber Blends. Polym. Plast. Technol. Eng., 45(4), 503–512.CrossRefGoogle Scholar
  54. 54.
    BOTROS, S. H. AND TAWFIK, S. Y. (2006) Improvement of Homogeneity of SBR/CR Rubber Blends with SBR -g — AA Grafted Rubber. Polym. Plast. Technol. Eng, 45(7), 829–837.CrossRefGoogle Scholar
  55. 55.
    O’FARREELL, C. P., GERSPACHER, M. AND NIKEL, L. (2000) Carbon black Dispersion by Electrical Measurements. Kautsch. Gummi Kunstst., 12(0), 701–710.Google Scholar

Copyright information

© The Malaysian Rubber Board 2018

Authors and Affiliations

  • A. A. Al-Ghamdi
    • 1
  • O. A. Al-Hartomy
    • 1
  • F. R. Al-Solamy
    • 2
  • N. Dishovsky
    • 3
    Email author
  • R. Nickolov
    • 4
  • M. Mihaylov
    • 3
  • P. Malinova
    • 3
  • K. Ruskova
    • 5
  1. 1.Department of Physics, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  2. 2.Department of Mathematics, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  3. 3.Department of Polymer EngineeringUniversity of Chemical Technology and MetallurgySofiaBulgaria
  4. 4.Department of Technology of Organic Synthesis and FuelsUniversity of Chemical Technology and MetallurgySofiaBulgaria
  5. 5.Department of ChemistryTechnical University of SofiaSofiaBulgaria

Personalised recommendations