Advertisement

Canadian Journal of Public Health

, Volume 98, Issue 5, pp 407–411 | Cite as

Is There a Need to Revise Health Canada’s Human PCB Guidelines?

  • Eric N. Liberda
  • Leonard J. S. TsujiEmail author
  • Bruce C. Wainman
Article
  • 1 Downloads

Abstract

Background

This article assesses if there is a need to revise Health Canada’s polychlorinated biphenyl (PCB) guidelines for whole blood given that plasma is typically favoured over whole blood for analysis, technological advancements in analytical methods have occurred, and the congener profiles of PCBs in the environment continue to change due to degradation and re-compartmentalization.

Methods

Canadian epidemiological and exposure studies within the last 11 years were examined in order to determine the dominant method of PCB reporting and the human tissues or fluids analyzed.

Findings

In all but one study, PCBs were analyzed on a congener basis. In the cases where an Aroclor™ equivalency was reported, the result was calculated using an Aroclor™ estimation equation based on several PCB congeners. To date, a wide variety of tissues and fluids are still being analyzed; however, only one study performed the analysis using whole blood, the basis of Health Canada’s guidelines. Additionally, congener profiles in the environment are changing due to degradation and re-compartmentalization; therefore, guidelines should reflect this change.

Conclusion

The reporting of whole blood PCB levels in Canada is a rare practice, and reporting PCBs solely as an Aroclor™ mixture can result in false non-detection; however, the Health Canada guidelines are based on Aroclor™ 1260 levels in whole blood. PCB congener analysis by gas chromatography/mass spectroscopy results in greater accuracy with greater sensitivity and limit of detection for the samples when compared to gas chromatography alone. Further, Aroclor™ equivalency can be estimated from congener analysis results. No other nation has yet prescribed PCB guidelines in human fluids or tissues; this is likely due to the uncertainty associated with PCB health risk assessment. Given the findings, whole blood PCB guidelines must be revised in order to reflect advances in the medical sciences.

MeSH terms

Polychlorinated biphenyls Aroclor™ guideline 

Résumé

Contexte

Dans cet article, nous cherchons à déterminer s’il y a lieu de mettre à jour les lignes directrices de Santé Canada sur les biphényles polycholorés (BPC) dans le sang entier, étant donné que l’on utilise d’habitude le plasma plutôt que le sang entier à des fins d’analyse, qu’il y a eu des progrès techniques dans les méthodes d’analyse, et que le profil des congénères de BPC dans l’environnement continue d’évoluer en raison de la dégradation et de la reconfiguration des BPC.

Méthode

Nous avons examiné les études épidémiologiques et d’exposition réalisées au Canada au cours des 11 dernières années afin de déterminer la méthode de déclaration la plus utilisée pour les BPC, ainsi que les tissus et liquides organiques humains analysés.

Résultats

Dans toutes les études sauf une, l’analyse portait sur des congénères de BPC. Lorsqu’un équivalent AroclorMD était indiqué, le résultat avait été calculé à l’aide d’une équation d’estimation des AroclorMD fondée sur plusieurs congénères de BPC. On semble encore utiliser des tissus et liquides organiques très divers pour ce type d’analyses, mais une seule étude portait sur le sang entier (le produit dont il est question dans les lignes directrices de Santé Canada). De plus, le profil des congénères dans l’environnement évolue en raison de la dégradation et de la reconfiguration des BPC, ce dont les lignes directrices devraient tenir compte.

Conclusion

L’analyse des concentrations de BPC dans le sang entier est une pratique rare au Canada, et la détection des BPC uniquement sous forme de mélange d’AroclorMD risque de produire des résultats faussement négatifs; or, les lignes directrices de Santé Canada sont fondées sur les concentrations d’AroclorMD 1260 dans le sang entier. L’analyse des congénères de BPC par chromatographie en phase gazeuse et spectroscopie de masse donne des résultats plus précis, avec une sensibilité plus grande et une limite de détection plus faible, que la chromatographie gazeuse utilisée seule. De plus, il est possible d’estimer l’équivalence AroclorMD à partir des résultats d’analyse de congénères. Aucun autre pays n’a encore publié de lignes directrices pour la détection des BPC dans les liquides ou tissus humains, sans doute en raison de l’incertitude associée à l’évaluation du risque des BPC pour la santé. Sur la base de ces résultats, il faudrait revoir les lignes directrices sur la détection des BPC dans le sang entier en fonction des progrès de la science médicale.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Van Oostdam JC, Dewailly E, Gilman A, Hansen JC, Odland JO, Chashchin V, et al. Circumpolar maternal blood contaminant survey, 1994–1997 organochlorine compounds. Sci Total Environ 2004;330:55–70.CrossRefGoogle Scholar
  2. 2.
    Schecter A, Ryan JJ, Päpke O. Decrease in levels and body burden of dioxins, dibenzofurans, PCBs, DDE, and HCB in blood and milk in a mother nursing twins over a thirty-eight month period. Chemosphere 1998;37:9–12.Google Scholar
  3. 3.
    McCready D, Aronson KJ, Chu W, Fan W, Vesprini D, Narod SA, et al. Breast tissue organochlorine levels and metabolic genotypes in relation to breast cancer risk Canada. Cancer Causes and Control 2004;15:399–418.CrossRefGoogle Scholar
  4. 4.
    Younglai EV, Foster WG, Hughes EG, Trim K, Jarrell, JF. Levels of environmental contaminants in human follicular fluid, serum, and seminal plasma of couples undergoing in vitro fertilization. Arch Environ Contam Toxicol 2002;43:121–26.CrossRefGoogle Scholar
  5. 5.
    AMAP. AMAP Assessment Report: Artic Pollution Issues. Artic Monitoring and Assessment Program (AMAP). Oslo, Norway, xii+859pp.Google Scholar
  6. 6.
    Position Paper of the American Council on Science and Health: Public Health Concerns about Environmental Polychlorinated Biphenyls (PCBs). Ecotoxicology and Environmental Safety 1997;38:71–84.CrossRefGoogle Scholar
  7. 7.
    Health Protection Branch. Information Letter, Polychlorinated Biphenyls, Department of National Health and Welfare — Committee Report, March 31, 1978.Google Scholar
  8. 8.
    Health Canada. The Health and Environment Handbook for Health Professionals: Health and the Environment. Ottawa: Health Canada, 1998.Google Scholar
  9. 9.
    Health Canada. Assessment of PCBs among 17 Fort Albany First Nation Community Members. First Nations and Inuit Health Branch, August 2001.Google Scholar
  10. 10.
    Health Canada. Assessment of PCBs among 18 Moose Factory First Nation Community Members. First Nations and Inuit Health Branch, August 2001.Google Scholar
  11. 11.
    Health Canada. Assessment of PCBs among 21 Cochrane First Nation Community Members. First Nations and Inuit Health Branch, August 2001.Google Scholar
  12. 12.
    Walker JB, Seddon L, McMullen E, Houseman J, Tofflemire K, Corriveau A, et al. Organochlorine levels in maternal and umbilical cord blood plasma in Arctic Canada. Sci Total Environ 2003;302:27–52.CrossRefGoogle Scholar
  13. 13.
    Woolcott CG, Aronson KJ, Hanna WM, SenGupta SK, McCready DR, Sterns EE, et al. Organochlorines and breast cancer risk by receptor status, tumor size, and grade (Canada). Cancer Causes and Control 2001;12:395–404.CrossRefGoogle Scholar
  14. 14.
    Tsuji LJ, Wainman BC, Martin ID, Weber JP, Sutherland C, Elliott JR, et al. The Mid-Canada Radar Line and First Nations’ People of the James Bay region, Canada: An evaluation using log-linear contingency modeling to analyze organochlorine frequency data. J Environmental Monitoring 2005;7:1–12.CrossRefGoogle Scholar
  15. 15.
    Tsuji LJ, Wainman BC, Weber JP, Sutherland C, Katapatuk B, Nieboer E. Protecting the health of First Nation personnel at contaminated sites: A case study of mid-Canada Radar Line Site 050 in Northern Canada. Arctic 2005;58(3):233–40.Google Scholar
  16. 16.
    Dewailly E, Ayotte P, Laliberte, C, Weber JP, Nantel, AJ. Polychlorinated biphenyl (PCB) and dichlorodiphenyl dichloroethylene (DDE) concentrations in the breast milk of women in Quebec. Am J Public Health 1996;86(9):1241- 46.Google Scholar
  17. 17.
    Martin M, Richardson JB, Lam, KP. Harmonisation of polychlorinated biphenyl (PCB) analyses for ecotoxicological interpretations of southeast Asian environmental media: What’s the problem? Marine Pollution Bull 2003;46:159–70.CrossRefGoogle Scholar
  18. 18.
    Fort Albany First Nation and Weenusk First Nations, Final Report. Mid Canada Radar Line and Contaminants Project (HQ0600227), May 2006.Google Scholar
  19. 19.
    Ryan JJ, Dewailly E, Gilman A, Laliberte C, Ayotte P, Rodrigue J. Dioxin-like compounds in fishing people from the Lower North Shore of the St. Lawrence River, Quebec, Canada. Arch Environ Health 1997;52(4):309–16.CrossRefGoogle Scholar
  20. 20.
    Saint-Amour D, Roy MS, Bastien C, Ayotte P, Dewailly E, Despres C, et al. Alterations of visual evoked potentials in preschool Inuit children exposed to methylmercury and polychlorinated biphenyls from a marine diet. Neurotoxicology 2006;27(4):567–78.CrossRefGoogle Scholar
  21. 21.
    Dallaire F, Dewailly E, Muckle G, Vézina C, Jacobson SW, Jacobson JL, et al. Acute infections and environmental exposure to organochlorines in Inuit infants from Nunavik. Environ Health Perspect 2004;112(14):1359–64.CrossRefGoogle Scholar
  22. 22.
    Demers A, Ayotte P, Brisson J, Dodin S, Robert J, Dewailly E. Plasma concentrations of polychlorinated biphenyls and the risk of breast cancer: A congener-specific analysis. Am J Epidemiol 2002;155(7):629–35.CrossRefGoogle Scholar
  23. 23.
    Pereg D, Dewailly E, Poirier GG, Ayotte P. Environmental exposure to polychlorinated biphenyl and placental CYP1A1 activity in Inuit women from Northern Quebec. Environ Health Perspect 2002;110(6):607–12.CrossRefGoogle Scholar
  24. 24.
    Aronson KJ, Miller AB, Woolcott CG, Sterns EE, McCready DR, Lickley LA, et al. Breast adipose tissue concentrations of polychlorinated biphenyls and other organochlorines and breast cancer risk. Cancer Epidemiol Biomarkers Prevent 2000;9(1):55–63.Google Scholar
  25. 25.
    Demers A, Ayotte P, Brisson J, Dodin S, Robert J, Dewailly E. Risk and aggressiveness of breast cancer in relation to plasma organochlorine concentrations. Cancer Epidemiol Biomarkers & Prevent 2000;9:161–66.Google Scholar
  26. 26.
    Dewailly E, Ayotte P, Bruneau S, Gingras S, Belles-Isles M, Roy R. Susceptibility to infections and immune status in Inuit exposed to organochlorines. Environ Health Perspect 2000;108(3):205–11.CrossRefGoogle Scholar
  27. 27.
    Lebel G, Dodin S, Ayotte P, Marcoux S, Ferron L, Dewailly E. Organochlorine exposure and the risk of endometriosis. Fertility and Sterility 1998;69(2):221–28.CrossRefGoogle Scholar
  28. 28.
    Ayotte P, Dewailly E, Lambert GH, Perkins SL, Poon R, Feeley M, et al. Biomarker measurements in a coastal fish-eating population environmentally exposed to organochlorines. Environ Health Perspect 2005;113(10):1318–24.CrossRefGoogle Scholar
  29. 29.
    Jarrell J, Chan S, Hauser R, Hu H. Longitudinal assessment of PCBs and chlorinated pesticides in pregnant women from Western Canada. Environ Health 2005;4:10.CrossRefGoogle Scholar
  30. 30.
    Ayotte P, Muckle G, Jacobson JL, Jacobson SW, Dewailly E. Assessment of pre- and postnatal exposure to polychlorinated biphenyls: Lessons from the Inuit Cohort Study. Environ Health Perspect 2003;111(9):1253–58.CrossRefGoogle Scholar
  31. 31.
    Cole DC, Sheeshka J, Murkin EJ, Kearney J, Scott F, Ferron LA, Webber, JP. Dietary intakes and plasma organochlorine contaminant levels among Great Lakes fish eaters. Arch Environ Health 2002;57(5):496–509.CrossRefGoogle Scholar
  32. 32.
    Dallaire F, Dewailly E, Laliberté C, Muckle G, Ayotte P. Temporal trends of organochlorine concentrations in umbilical cord blood of newborns from the Lower North Shore of the St. Lawrence River (Quebec, Canada). Environ Health Perspect 2002;110(8):835–38.CrossRefGoogle Scholar
  33. 33.
    Nadon S, Kosatsky T, Przybysz R. Contaminant exposure among women of childbearing age who eat St. Lawrence River sport fish. Arch Environ Health 2002;57(5):473–81.CrossRefGoogle Scholar
  34. 34.
    Sandau CD, Ayotte P, Dewailly E, Duffe J, Norstrom, RJ. Pentachlorophenol and hydroxylated polychlorinated biphenyl metabolites in umbilical cord plasma of neonates from coastal populations in Quebec. Environ Health Perspect 2002;110(4):411–17.CrossRefGoogle Scholar
  35. 35.
    Muckle G, Ayotte P, Dewailly E, Jacobson SW, Joseph, JL. Determinants of polychlorinated biphenyls and methylmercury exposure in Inuit women of childbearing age. Environ Health Perspect 2001;109(9):957–63.CrossRefGoogle Scholar
  36. 36.
    Muckle G, Ayotte P, Dewailly E, Jacobson SW, Jacobson, JL. Prenatal exposure of the Northern Quebec Inuit infants to environmental contaminants. Environ Health Perspect 2001;109(12):1291–99.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Longnecker M, Ryan JJ, Gladen BC, Schecter AJ. Correlations among human plasma levels of dioxin-like compounds and polychlorinated biphenyls (PCBs) and implications for epidemiologic studies. Arch Environ Health 2000;55(3):195–200.CrossRefGoogle Scholar
  38. 38.
    Sandau CD, Ayotte P, Dewailly E, Duffe J, Norstrom, RJ. Analysis of hydroxylated metabolites of PCBs (OH-PCBs) and other chlorinated phenolic compounds in whole blood from Canadian Inuit. Environ Health Perspect 2000;108(7):611–16.CrossRefGoogle Scholar
  39. 39.
    Kearney JP, Cole DC, Ferron LA, Weber, JP. Blood PCB, p,p’-DDE, and mirex levels in Great Lakes fish and waterfowl consumers in two Ontario communities. Environ Res 1999;80(2 Pt 2):S138–S149.CrossRefGoogle Scholar
  40. 40.
    Newsome WH, Ryan, JJ. Toxaphene and other chlorinated compounds in human milk from northern and southern Canada: A comparison. Chemosphere 1999;39(3):519–26.CrossRefGoogle Scholar
  41. 41.
    Muckle G, Dewailly E, Ayotte P. Prenatal exposure of Canadian children to polychlorinated biphenyls and mercury. Can J Public Health 1998;89(Supp.1):S20-S25.Google Scholar
  42. 42.
    Ayotte P, Dewailly E, Ryan JJ, Bruneau S, Lebel G. PCB and dioxin-like compounds in plasma of adult Inuit living in Nunavik (Arctic Quebec). Chemosphere 1997;34(5–7):1459–68.CrossRefGoogle Scholar
  43. 43.
    Newsome WH, Darvies D, Dourcet J. PCB and organochlorine pesticides in Canadian human milk–1992. Chemosphere 1995;30(11):2143–53.CrossRefGoogle Scholar
  44. 44.
    Health Canada. Q’s & A’s on PCBs in salmon and food safety. 2004. Available online at: https://doi.org/www.hc-sc.gc.ca/ahc-asc/media/nr-cp/ 2004/2004_pcb-bpcbk1_e.html (Accessed January 15, 2006).Google Scholar
  45. 45.
    Frame GM, Cochran JW, Boewadt, SS. Complete PCB congener distributions for 17 Aroclor mixtures determined by 3 HRGC systems optimized for comprehensive, quantitative, congenerspecific analysis. J High Resolution Chromatography 1996;19:657–68.CrossRefGoogle Scholar

Copyright information

© The Canadian Public Health Association 2007

Authors and Affiliations

  • Eric N. Liberda
    • 1
  • Leonard J. S. Tsuji
    • 1
    Email author
  • Bruce C. Wainman
    • 2
  1. 1.Department of Environment and Resource StudiesUniversity of WaterlooWaterlooCanada
  2. 2.Department of Obstetrics and GynecologyMcMaster UniversityHamiltonCanada

Personalised recommendations