Advertisement

Canadian Journal of Public Health

, Volume 98, Issue 5, pp 389–394 | Cite as

Fish Consumption Among Pregnant Women in London, Ontario

Associations with Socio-demographic and Health and Lifestyle Factors
  • Jessica M. SontropEmail author
  • Kathy N. Speechley
  • M. Karen Campbell
  • William R. Avison
  • Susan E. Evers
Article

Abstract

Background

Intake of fish and omega-3 fatty acids is inversely related to adverse health outcomes; however, these relationships may be confounded by socio-economic status and health behaviours. This study’s purpose was to describe the socio-demographic, health and lifestyle correlates of fish consumption among pregnant women.

Methods

Pregnant women (n=2394) completed a telephone interview between 10–22 weeks’ gestation (London, Ontario, 2002-5) containing questions on socio-demographic, health and lifestyle variables; dietary intake was measured using a 106-item validated food-frequency questionnaire. Unadjusted and adjusted risk ratios were obtained using a modified Poisson regression model.

Results

Infrequent fish consumption, <1/week, was reported by 32% of women. After adjusting for age and education, infrequent fish consumption was associated with education <high school (RR=1.60; 95% CI 1.30-1.96); age (≤21: RR=1.53; 95% CI 1.17–2.02; 22–25: RR=1.41; 95% CI 1.11-1.78; and 26-34: RR=1.39; 95% CI 1.15-1.69); current smoking status (RR=1.20; 95% CI 1.00–1.43); average exercise duration <30 minutes (never: RR=1.22; 95% CI 1.06-1.39 and 1–29 minutes: RR=1.25; 95% CI 1.08- 1.45); obesity (RR=1.19; 95% CI 1.01–1.41); and not meeting Canadian dietary guidelines for consumption of vegetables and fruit (RR=1.60; 95% CI 1.42–1.79), milk products (RR=1.19; 95% CI 1.05–1.36), and meat and alternatives (RR=1.89; 95% CI 1.69-2.12). Compared to frequent fish consumers, infrequent fish consumers were less likely to be moderate drinkers prior to pregnancy (RR=0.85; 95% CI 0.75-0.96).

Conclusion

Infrequent fish consumption was associated with lower socio-economic status and variables indicative of a less healthy lifestyle; these variables may act as confounders in studies evaluating fish consumption and health outcomes.

MeSH terms

Confounding factors (epidemiology) diet fatty acids omega-3 fishes Pregnancy 

Résumé

Contexte

La consommation de poisson et d’acides gras oméga-3 est inversement proportionnelle aux résultats sanitaires indésirables, mais le statut socioéconomique et les habitudes de santé pourraient être des facteurs confusionnels. Nous avons voulu décrire la corrélation entre le profil sociodémographique, l’état de santé et le mode de vie, d’une part, et la consommation de poisson, d’autre part, chez les femmes enceintes.

Méthode

De 2002 à 2005, des femmes enceintes entre la 10e et la 22e semaine de gestation (N=2 394) ont participé à une entrevue téléphonique à London (Ontario) sur des questions de nature sociodémographique, ainsi que sur la santé et le mode de vie; l’apport alimentaire des répondantes a été mesuré à l’aide d’un questionnaire validé sur la fréquence de consommation de 106 produits alimentaires. Les risques relatifs rajustés et non rajustés ont été calculés à l’aide d’un modèle de régression de Poisson modifié.

Résultats

Chez 32 % des femmes, la consommation de poisson était occasionnelle (moins d’une fois par semaine). Après normalisation des résultats selon l’âge et l’instruction, la consommation occasionnelle de poisson était associée à un faible niveau d’instruction (moins qu’un diplôme d’études secondaires) (RT=1,60; IC de 95 % = 1,30–1,96); à l’âge (21 ans ou moins: RT=1,53; IC de 95 % = 1,17–2,02; 22 à 25 ans: RT=1,41; IC de 95 % = 1,11–1,78; 26 à 34 ans: RT=1,39; IC de 95 % = 1,15–1,69); à l’usage actuel du tabac (RT=1,20; IC de 95 % = 1,00–1,43); à une période moyenne d’activité physique inférieure à 30 minutes (aucune activité: RT=1,22; IC de 95 % = 1,06–1,39; 1 à 29 minutes d’activité: RT=1,25; IC de 95 % = 1,08–1,45); à l’obésité (RT=1,19; IC de 95 % = 1,01–1,41); et au non-respect des directives canadiennes de consommation des fruits et des légumes (RT=1,60; IC de 95 % = 1,42–1,79), des produits laitiers (RT=1,19; IC de 95 % = 1,05–1,36) et des viandes et substituts (RT=1,89; IC de 95 % = 1,69–2,12). Par rapport aux femmes qui consommaient souvent du poisson, les consommatrices occasionnelles étaient moins susceptibles d’avoir eu une consommation d’alcool modérée avant de tomber enceintes (RT=0,85; IC de 95 % = 0,75–0,96).

Conclusion

La consommation occasionnelle de poisson était associée à un statut socioéconomique plus faible et à des variables indicatives d’un mode de vie moins sain; ces variables pourraient être des facteurs confusionnels dans les études qui portent sur la consommation de poisson et les résultats sanitaires.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Connor, WE. Importance of n-3 fatty acids in health and disease. Am J Clin Nutr 2000;71(1 Suppl):171S–175S.PubMedCrossRefGoogle Scholar
  2. 2.
    Raza Shaikh S, Edidin M. Polyunsaturated fatty acids, membrane organization, T cells, and antigen presentation. Am J Clin Nutr 2006;84:1277–89.CrossRefGoogle Scholar
  3. 3.
    Kris-Etherton PM, Harris WS, Appel LJ, for the Nutrition Committee. Fish Consumption, Fish Oil, Omega-3 Fatty Acids, and Cardiovascular Disease. Circulation 2002;106(21):2747–57.PubMedCrossRefGoogle Scholar
  4. 4.
    He K, Rimm EB, Merchant A, Rosner BA, Stampfer MJ, Willett WC, Ascherio A. Fish consumption and risk of stroke in men. JAMA 2002;288(24):3130–36.PubMedCrossRefGoogle Scholar
  5. 5.
    He K, Song Y, Daviglus ML, Liu K, Van Horn L, Dyer AR, et al. Fish consumption and incidence of stroke: A meta-analysis of cohort studies. Stroke 2004;35(7):1538–42.PubMedCrossRefGoogle Scholar
  6. 6.
    Mozaffarian D, Longstreth WT, Jr., Lemaitre RN, Manolio TA, Kuller LH, Burke GL, Siscovick, DS. Fish consumption and stroke risk in elderly individuals: The cardiovascular health study. Arch Intern Med 2005;165(2):200–6.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Hodge L, Salome CM, Peat JK, Haby MM, Xuan W, Woolcock, AJ. Consumption of oily fish and childhood asthma risk. Med J Aust 1996;164(3):137–40.PubMedGoogle Scholar
  8. 8.
    Terry P, Lichtenstein P, Feychting M, Ahlbom A, Wolk A. Fatty fish consumption and risk of prostate cancer. Lancet 2001;357(9270):1764–66.Google Scholar
  9. 9.
    Leitzmann MF, Stampfer MJ, Michaud DS, Augustsson K, Colditz GC, Willett WC, Giovannucci, EL. Dietary intake of n-3 and n-6 fatty acids and the risk of prostate cancer. Am J Clin Nutr 2004;80(1):204–16.PubMedCrossRefGoogle Scholar
  10. 10.
    Augustsson K, Michaud DS, Rimm EB, Leitzmann MF, Stampfer MJ, Willett WC, Giovannucci E. A prospective study of intake of fish and marine fatty acids and prostate cancer. Cancer Epidemiol Biomarkers Prev 2003;12(1):64–67.PubMedGoogle Scholar
  11. 11.
    Fernandez E, Chatenoud L, La Vecchia C, Negri E, Franceschi S. Fish consumption and cancer risk. Am J Clin Nutr 1999;70(1):85–90.PubMedCrossRefGoogle Scholar
  12. 12.
    Kato I, Akhmedkhanov A, Koenig K, Toniolo PG, Shore RE, Riboli E. Prospective study of diet and female colorectal cancer: The New York University Women’s Health Study. Nutr Cancer 1997;28(3):276–81.PubMedCrossRefGoogle Scholar
  13. 13.
    Sontrop J, Campbell, MK. Omega-3 polyunsaturated fatty acids and depression: A review of the evidence and a methodological critique. Prev Med 2006;42(1):4–13.PubMedCrossRefGoogle Scholar
  14. 14.
    Green P, Hermesh H, Monselise A, Marom S, Presburger G, Weizman A. Red cell membrane omega-3 fatty acids are decreased in nondepressed patients with social anxiety disorder. Eur Neuropsychopharmacol 2006;16(2):107–13.PubMedCrossRefGoogle Scholar
  15. 15.
    Iribarren C, Markovitz JH, Jacobs DR, Jr., Schreiner PJ, Daviglus M, Hibbeln, JR. Dietary intake of n-3, n-6 fatty acids and fish: Relationship with hostility in young adults–The CARDIA study. Eur J Clin Nutr 2004;58(1):24- 31.Google Scholar
  16. 16.
    Morris MC, Evans DA, Bienias JL, Tangney CC, Bennett DA, Wilson RS, et al. Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Arch Neurol 2003;60(7):940–46.PubMedCrossRefGoogle Scholar
  17. 17.
    Kalmijn S, Launer LJ, Ott A, Witteman JC, Hofman A, Breteler, MM. Dietary fat intake and the risk of incident dementia in the Rotterdam Study. Ann Neurol 1997;42(5):776–82.PubMedCrossRefGoogle Scholar
  18. 18.
    Morris MC, Evans DA, Tangney CC, Bienias JL, Wilson, RS. Fish consumption and cognitive decline with age in a large community study. Arch Neurol 2005;62:1–5.Google Scholar
  19. 19.
    Heude B, Ducimetiere P, Berr C. Cognitive decline and fatty acid composition of erythrocyte membranes–The EVA Study. Am J Clin Nutr 2003;77(4):803–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Williams MA, Zingheim RW, King IB, Zebelman, AM. Omega-3 fatty acids in maternal erythrocytes and risk of preeclampsia. Epidemiology 1995;6(3):232–37.PubMedCrossRefGoogle Scholar
  21. 21.
    Olsen SF, Secher, NJ. Low consumption of seafood in early pregnancy as a risk factor for preterm delivery: Prospective cohort study. BMJ 2002;324(7335):447.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Olsen SF, Hansen HS, Sommer S, Jensen B, Sorensen TI, Secher NJ, Zachariassen P. Gestational age in relation to marine n-3 fatty acids in maternal erythrocytes: A study of women in the Faroe Islands and Denmark. Am J Obstet Gynecol 1991;164(5 Pt 1):1203–9.PubMedCrossRefGoogle Scholar
  23. 23.
    Oken E, Kleinman KP, Olsen SF, Rich-Edwards JW, Gillman, MW. Associations of seafood and elongated n-3 fatty acid intake with fetal growth and length of gestation: Results from a US pregnancy cohort. Am J Epidemiol 2004;160(8):774–83.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Rogers I, Emmett P, Ness A, Golding J. Maternal fish intake in late pregnancy and the frequency of low birth weight and intrauterine growth retardation in a cohort of British infants. J Epidemiol Community Health 2004;58(6):486–92.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Barberger-Gateau P, Jutand M-A, Letenneur L, Larrieu S, Tavernier B, Berr C. Correlates of regular fish consumption in French elderly community dwellers: Data from the Three-City study. Eur J Clin Nutr 2005;59:817–25.PubMedCrossRefGoogle Scholar
  26. 26.
    Galobardes B, Morabia A, Bernstein, MS. Diet and socioeconomic position: Does the use of different indicators matter? Int J Epidemiol 2001;30(2):334–40.PubMedCrossRefGoogle Scholar
  27. 27.
    Johansson LR, Solvoll K, Bjorneboe GE, Drevon CA. Intake of very-long-chain n-3 fatty acids related to social status and lifestyle. Eur J Clin Nutr 1998;52(10):716–21.PubMedCrossRefGoogle Scholar
  28. 28.
    Innis SM, Elias, SL. Intakes of essential n-6 and n-3 polyunsaturated fatty acids among pregnant Canadian women. Am J Clin Nutr 2003;77(2):473–78.PubMedCrossRefGoogle Scholar
  29. 29.
    Al MD, Badart-Smook A, von Houwelingen AC, Hasaart TH, Hornstra G. Fat intake of women during normal pregnancy: Relationship with maternal and neonatal essential fatty acid status. J Am Coll Nutr 1996;15(1):49–55.PubMedCrossRefGoogle Scholar
  30. 30.
    Brown JE, Buzzard IM, Jacobs DR, Jr., Hannan PJ, Kushi LH, Barosso GM, Schmid, LA. A food frequency questionnaire can detect pregnancyrelated changes in diet. J Am Diet Assoc 1996;96(3):262–66.PubMedCrossRefGoogle Scholar
  31. 31.
    Health Canada. 2005 Canadian Nutrient File. Available online at: https://doi.org/www.hc-sc.gc.ca/ fn-an/nutrition/fiche-nutri-data/index_e.html (Accessed January 11, 2005).Google Scholar
  32. 32.
    Olsen SF, Hansen HS, Sandstrom B, Jensen B. Erythrocyte levels compared with reported dietary intake of marine n-3 fatty acids in pregnant women. Br J Nutrition 1994;73:387–95.CrossRefGoogle Scholar
  33. 33.
    Bonaa KH, Bjerve KS, Nordoy A. Habitual fish consumption, plasma phospholipid fatty acids, and serum lipids: The Tromso study. Am J Clin Nutr 1992;55(6):1126–34.PubMedCrossRefGoogle Scholar
  34. 34.
    Anderson LF, Solvoll K, Drevon, CA. Very-longchain n-3 fatty acids as biomarkers for intake of fish and n-3 fatty acid concentrates. Am J Clin Nutr 1996;64:305–11.CrossRefGoogle Scholar
  35. 35.
    Hollingshead, AB. Four Factor Index of Social Status. New Haven, CT: Department of Sociology, Yale University, 1975.Google Scholar
  36. 36.
    Human Resources and Skills Development Canada. National Occupation Classification. Available online at: https://doi.org/www23.hrdcdrhc.gc.ca/2001/e/generic/welcome.shtml (Accessed October 10, 2005).Google Scholar
  37. 37.
    Health Canada. Canadian Guidelines for Body Weight Classification in Adults. Available online at: https://doi.org/www.hc-sc.gc.ca/fn-an/nutrition/ weights-poids/guide-ld-adult/bmi_chart_javagraph_ imc_java_e.html (Accessed January 5, 2006).Google Scholar
  38. 38.
    Health Canada. Canada’s Food Guide to Healthy Eating. Available online at: https://doi.org/www.hcsc.gc.ca/fn-an/food-guide-aliment/index_e.html (Accessed January 5, 2005).Google Scholar
  39. 39.
    Zou G. A modified poisson regression approach to prospective studies with binary data. Am J Epidemiol 2004;159(7):702–6.PubMedCrossRefGoogle Scholar
  40. 40.
    Davey GK, Spencer EA, Appleby PN, Allen NE, Knox KH, Key, TJ. EPIC-Oxford: Lifestyle characteristics and nutrient intakes in a cohort of 33,883 meat-eaters and 31,546 non meat-eaters in the, UK. Public Health Nutr 2003;6(3):259–69.PubMedCrossRefGoogle Scholar
  41. 41.
    Quatromoni PA, Copenhafer DL, Demissie S, D’Agostino RB, O’Horo CE, Nam BH, Millen BE. The internal validity of a dietary pattern analysis. The Framingham Nutrition Studies. J Epidemiol Community Health 2002;56(5):381–88.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Fung TT, Rimm EB, Spiegelman D, Rifai N, Tofler GH, Willett WC, Hu, FB. Association between dietary patterns and plasma biomarkers of obesity and cardiovascular disease risk. Am J Clin Nutr 2001;73(1):61–67.PubMedCrossRefGoogle Scholar
  43. 43.
    Williams DE, Prevost AT, Whichelow MJ, Cox BD, Day NE, Wareham, NJ. A cross-sectional study of dietary patterns with glucose intolerance and other features of the metabolic syndrome. Br J Nutr 2000;83(3):257–66.PubMedCrossRefGoogle Scholar
  44. 44.
    Fung TT, Willett WC, Stampfer MJ, Manson JE, Hu, FB. Dietary patterns and the risk of coronary heart disease in women. Arch Intern Med 2001;161(15):1857–62.PubMedCrossRefGoogle Scholar
  45. 45.
    Jacques PF, Tucker, KL. Are dietary patterns useful for understanding the role of diet in chronic disease? Am J Clin Nutr 2001;73(1):1–2.PubMedCrossRefGoogle Scholar
  46. 46.
    Rifas-Shiman SL, Rich-Edwards JW, Willett WC, Kleinman KP, Oken E, Gillman, MW. Changes in dietary intake from the first to the second trimester of pregnancy. Paediatr Perinat Epidemiol 2006;20(1):35–42.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    National Marine Fisheries Service. Fisheries of the United States. Available online at: https://doi.org/www.st.nmfs.gov/st1/fus/current/09_percapita2002. pdf (Accessed May 2, 2006).Google Scholar
  48. 48.
    Welch AA, Lund E, Amiano P, Dorronsoro M, Brustad M, Kumle M, et al. Variability of fish consumption within the 10 European countries participating in the European Investigation into Cancer and Nutrition (EPIC) study. Public Health Nutr 2002;5(6B):1273–85.PubMedCrossRefGoogle Scholar
  49. 49.
    Flegal, KM. Evaluating epidemiologic evidence of the effects of food and nutrient exposures. Am J Clin Nutr 1999;69(6):1339S–1344S.PubMedCrossRefGoogle Scholar
  50. 50.
    Kelsey J, Whittemore A, Evans A, Thompson W. Methods in Observational Epidemiology, 2nd ed. New York: Oxford University Press, 1996.Google Scholar
  51. 51.
    Klebanoff MA, Levine RJ, Morris CD, Hauth JC, Sibai BM, Ben Curet L, et al. Accuracy of self-reported cigarette smoking among pregnant women in the 1990s. Paediatr Perinat Epidemiol 2001;15(2):140–43.PubMedCrossRefGoogle Scholar
  52. 52.
    Parazzini F, Davoli E, Rabaiotti M, Restelli S, Stramare L, Dindelli M, et al. Validity of selfreported smoking habits in pregnancy: A saliva cotinine analysis. Acta Obstet Gynecol Scand 1996;75(4):352–54.PubMedCrossRefGoogle Scholar
  53. 53.
    Brunner E, Stallone D, Juneja M, Bingham S, Marmot M. Dietary assessment in Whitehall II: Comparison of 7 d diet diary and food-frequency questionnaire and validity against biomarkers. Br J Nutr 2001;86(3):405–14.PubMedCrossRefGoogle Scholar
  54. 54.
    Byers T, Marshall J, Fiedler R, Zielezny M, Graham S. Assessing nutrient intake with an abbreviated dietary interview. Am J Epidemiol 1985;122(1):41–50.PubMedCrossRefGoogle Scholar
  55. 55.
    Oken E, Kleinman KP, Berland WE, Simon SR, Rich-Edwards JW, Gillman, MW. Decline in fish consumption among pregnant women after a national mercury advisory. Obstet Gynecol 2003;102(2):346–51.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Craig CL, Cameron C, Bauman A. Socio- Demographic and Lifestyle Correlates of Obesity — Technical Report on the Secondary Analyses Using the 2001–2002 Canadian Community Survey. Ottawa: Canadian Institute for Health Information, 2005.Google Scholar
  57. 57.
    Davey Smith G. Health Inequalities. Bristol Press: The Policy Press, 2003.Google Scholar

Copyright information

© The Canadian Public Health Association 2007

Authors and Affiliations

  • Jessica M. Sontrop
    • 1
    Email author
  • Kathy N. Speechley
    • 1
    • 3
    • 4
  • M. Karen Campbell
    • 1
    • 2
    • 3
    • 4
    • 5
  • William R. Avison
    • 1
    • 3
    • 4
    • 6
  • Susan E. Evers
    • 5
  1. 1.Department of Epidemiology & BiostatisticsThe University of Western OntarioLondonCanada
  2. 2.Department of Obstetrics & GynecologyUniversity of Western OntarioCanada
  3. 3.Department of PaediatricsUniversity of Western OntarioCanada
  4. 4.Children’s Health Research Institute and Lawson Health Research InstituteLondonCanada
  5. 5.Department of Family Relations and Applied NutritionUniversity of GuelphGuelphCanada
  6. 6.Department of SociologyUniversity of Western OntarioCanada

Personalised recommendations