Advertisement

Canadian Journal of Public Health

, Volume 99, Issue 5, pp 387–390 | Cite as

A Decentralized Molecular Diagnostic Testing Plan for Pandemic Influenza in the Ontario Public Health Laboratory System

  • Steven J. Drews
  • Anna Majury
  • Frances Jamieson
  • Garth Riley
  • Tony Mazzulli
  • Donald E. Low
Commentary

Abstract

The Ontario Public Health Laboratories system (OPHL) is in the midst of a six-year plan to implement molecular tools for pandemic influenza diagnostics in one central and three regional public health laboratories. This plan has been formulated as a consequence of: 1) experiences gained through severe acute respiratory syndrome (SARS), and comments of the members of the Expert Panel on SARS and Infectious Disease Control (i.e., the Walker report); 2) a review of pandemic preparedness literature; 3) historical and epidemiologic discussions about previous pandemics; and 4) suggestions made by various pandemic working committees. The OPHL plan includes: 1) an aggressive restructuring of the overall molecular microbiology testing capacity of the OPHL; 2) the ability to shift influenza testing of samples between designated OPHL laboratories; and 3) the development of screening tools for pandemic influenza diagnostic tests. The authors believe that investing in increased molecular testing capacity for regional laboratories outside the greater Toronto area will be beneficial to the OPHL system whether or not an influenza pandemic occurs. Well-trained technologists and microbiologists, and the introduction of new technologies, will facilitate the development of a wide variety of molecular tests for other infectious diseases at public health laboratories geographically distant from Toronto, thus enhancing overall laboratory testing capacity in the province of Ontario.

Key words

Pandemic planning influenza molecular testing RT-PCR diagnosis 

Résumé

Le système des laboratoires de santé publique de l’Ontario (LSPO) est à mi-parcours d’un plan de six ans visant à mettre en œuvre des outils moléculaires pour le diagnostic de la grippe pandémique dans un laboratoire central et trois laboratoires régionaux de dépistage sanitaire. Le plan en question a été formulé d’après: 1) les leçons de la crise du syndrome respiratoire aigu sévère (SRAS) et les commentaires des membres du Comité d’experts sur le SRAS et la lutte contre les maladies infectieuses (rapport Walker); 2) l’examen de la documentation sur la préparation à une pandémie; 3) les analyses historiques et épidémiologiques des pandémies antérieures; et 4) les suggestions de divers comités de travail sur les pandémies. Le plan des LSPO englobe: 1) une restructuration approfondie de l’ensemble des outils de dépistage basés sur la microbiologie moléculaire dans les laboratoires; 2) la possibilité de transférer d’un LSPO désigné à un autre l’analyse des échantillons grippaux; et 3) l’élaboration d’outils de sérodiagnostic de la grippe pandémique. Selon les auteurs, le fait d’investir davantage dans la capacité de dépistage moléculaire des laboratoires régionaux à l’extérieur du Grand Toronto serait bénéfique pour le système des LSPO, peu importe si une pandémie de grippe survient ou non. Des technologues et des microbiologistes bien formés, ainsi que l’implantation de nouvelles technologies, faciliteront l’élaboration d’un vaste éventail de tests moléculaires pour d’autres maladies infectieuses dans les laboratoires de dépistage sanitaire éloignés de Toronto, ce qui devrait améliorer globalement la capacité de dépistage en laboratoire en Ontario.

Mots clés

planification entourant une pandémie grippe tests moléculaires RT-PCR diagnostic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    MacDougall H. Toronto’s Health Department in action: Influenza in 1918 and SARS in 2003. J Hist Med Allied Sci 2007;62(1):56–89.CrossRefGoogle Scholar
  2. 2.
    Ontario Expert Panel on SARS and Infectious Disease Control. Emergency Preparedness. For The Public’s Health: Initial Report of the Ontario Expert Panel on SARS and Infectious Disease Control. 1st ed. 2007;103–32.Google Scholar
  3. 3.
    Chowell G, Ammon CE, Hengartner NW, Hyman JM. Transmission dynamics of the great influenza pandemic of 1918 in Geneva, Switzerland: Assessing the effects of hypothetical interventions. J Theor Biol 2006;241(2):193–204.CrossRefGoogle Scholar
  4. 4.
    Viboud C, Grais RF, Lafont BA, Miller MA, Simonsen L. Multinational impact of the 1968 Hong Kong influenza pandemic: Evidence for a smoldering pandemic. J Infect Dis 2005;192(2):233–48.CrossRefGoogle Scholar
  5. 5.
    Hrehorovich V, Dyal WW, Schrack WD, Jr. Influenza epidemic in Pennsylvania. Health Serv Rep 1972;87(9):835–44.CrossRefGoogle Scholar
  6. 6.
    Viboud C, Tam T, Fleming D, Miller MA, Simonsen L. 1951 influenza epidemic, England and Wales, Canada, and the United States. Emerg Infect Dis 2006;12(4):661–68.CrossRefGoogle Scholar
  7. 7.
    Viboud C, Tam T, Fleming D, Handel A, Miller MA, Simonsen L. Transmissibility and mortality impact of epidemic and pandemic influenza, with emphasis on the unusually deadly 1951 epidemic. Vaccine 2006;24(44–46):6701–7.CrossRefGoogle Scholar
  8. 8.
    Pandemic Influenza Committee: Pandemic Influenza Laboratory Preparedness Network. Pandemic Influenza Laboratory Preparedness Plan. 2007. The Canadian Pandemic Influenza Plan for the Health Sector.Google Scholar
  9. 9.
    Abed Y, Goyette N, Boivin G. Generation and characterization of recombinant influenza A (H1N1) viruses harboring amantadine resistance mutations. Antimicrob Agents Chemother 2005;49(2):556–59.CrossRefGoogle Scholar
  10. 10.
    Bright RA, Medina MJ, Xu X, Perez-Oronoz G, Wallis TR, Davis XM, et al. Incidence of adamantane resistance among influenza A (H3N2) viruses isolated worldwide from 1994 to 2005: A cause for concern. Lancet 2005;366(9492):1175–81.CrossRefGoogle Scholar
  11. 11.
    Mishin VP, Novikov D, Hayden FG, Gubareva LV. Effect of hemagglutinin glycosylation on influenza virus susceptibility to neuraminidase inhibitors. J Virol 2005;79(19):12416–24.CrossRefGoogle Scholar
  12. 12.
    Kiso M, Mitamura K, Sakai-Tagawa Y, Shiraishi K, Kawakami C, Kimura K, et al. Resistant influenza A viruses in children treated with oseltamivir: Descriptive study. Lancet 2004;364(9436):759–65.CrossRefGoogle Scholar
  13. 13.
    Gubareva LV, Kaiser L, Matrosovich MN, Soo-Hoo Y, Hayden FG. Selection of influenza virus mutants in experimentally infected volunteers treated with oseltamivir. J Infect Dis 2001;183(4):523–31.CrossRefGoogle Scholar
  14. 14.
    Brown IH. Advances in molecular diagnostics for avian influenza. Dev Biol (Basel) 2006;124:93–97.Google Scholar
  15. 15.
    Cheng SM, Vainionpaa R, Zhao P, Li F, Hu A, Forrest B, et al. Detection of influenza B in clinical specimens: Comparison of high throughput RT-PCR and culture confirmation. Virus Res 2004;103(1–2):85–90.CrossRefGoogle Scholar
  16. 16.
    de J, Bach VC, Phan TQ, Vo MH, Tran TT, Nguyen BH, et al. Fatal avian influenza A (H5N1) in a child presenting with diarrhea followed by coma. N Engl J Med 2005;352(7):686–91.CrossRefGoogle Scholar
  17. 17.
    Taubenberger JK, Morens DM. 1918 Influenza: The mother of all pandemics. Emerg Infect Dis 2006;12(1):15–22.CrossRefGoogle Scholar
  18. 18.
    Morens DM, Fauci AS. The 1918 influenza pandemic: Insights for the 21st century. J Infect Dis 2007;195(7):1018–28.CrossRefGoogle Scholar
  19. 19.
    Reichert TA, Christensen RA. It’s not about smoldering or neuraminidase: There were 2 variants of the A(H3N2) pandemic virus differing in internal genes. J Infect Dis 2005;192(10):1858–60.CrossRefGoogle Scholar
  20. 20.
    Reid AH, Janczewski TA, Lourens RM, Elliot AJ, Daniels RS, Berry CL, et al. 1918 influenza pandemic caused by highly conserved viruses with two receptor-binding variants. Emerg Infect Dis 2003;9(10):1249–53.CrossRefGoogle Scholar
  21. 21.
    Patterson KD, Pyle GF. The geography and mortality of the 1918 influenza pandemic. Bull Hist Med 1991;65(1):4–21.PubMedGoogle Scholar
  22. 22.
    Sattenspiel L, Herring DA. Simulating the effect of quarantine on the spread of the 1918–19 flu in central Canada. Bull Math Biol 2003;65(1):1–26.CrossRefGoogle Scholar
  23. 23.
    Ontario Ministry of Health and Long-Term Care. Pandemic/avian influenza is suspected -specimen collection and transportation guidelines. 2007.Google Scholar
  24. 24.
    Nolte FS. Case studies in cost effectiveness of molecular diagnostics for infectious diseases: Pulmonary tuberculosis, enteroviral meningitis, and BK virus nephropathy. Clin Infect Dis 2006;43(11):1463–67.CrossRefGoogle Scholar
  25. 25.
    Burt T, Mages ME. After the storm: Experiences and insights from the front. Healthc Exec 2006;21(2):24–30,32.PubMedGoogle Scholar
  26. 26.
    Rodriguez H, Aguirre BE. Hurricane Katrina and the healthcare infrastructure: A focus on disaster preparedness, response, and resiliency. Front Health Serv Manage 2006;23(1):13–23.CrossRefGoogle Scholar

Copyright information

© The Canadian Public Health Association 2008

Authors and Affiliations

  • Steven J. Drews
    • 1
    • 2
    • 3
  • Anna Majury
    • 4
    • 5
  • Frances Jamieson
    • 1
    • 3
  • Garth Riley
    • 1
  • Tony Mazzulli
    • 1
    • 2
    • 3
  • Donald E. Low
    • 1
    • 2
    • 3
  1. 1.Ministry of Health and Long-Term CarePublic Health Laboratories BranchEtobicokeCanada
  2. 2.Department of MicrobiologyMount Sinai HospitalTorontoCanada
  3. 3.Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoCanada
  4. 4.Ministry of Health and Long-Term CareKingston Public Health LaboratoryKingstonCanada
  5. 5.Department of Microbiology and ImmunologyQueen’s UniversityKingstonCanada

Personalised recommendations