Advertisement

Canadian Journal of Public Health

, Volume 96, Issue 4, pp 284–286 | Cite as

Understanding and Minimizing Epidemiologic Bias in Public Health Research

  • Bernard C. K. ChoiEmail author
  • Anita W. P. Pak
Article

Abstract

Awareness of potential biases is important for both researchers and policy-makers in public health: for researchers when designing and conducting studies, and for policymakers when reading study reports and making decisions. This paper explains the meaning and importance of epidemiologic bias in public health and discusses how it arises and what can be done to minimize it. Examples of counting participants in a meeting, to which many policy-makers can relate, are used throughout the paper to illustrate bias in general, random error and systematic error, the effect of sample size, the three main categories of bias (selection, information and confounding), stratification and mathematical modeling.

MeSH terms

Bias (epidemiology) epidemiology selection bias observer variation; confounding factors (epidemiology) 

Résumé

Il importe que les chercheurs et les décideurs en santé publique soient conscients des risques de biais. Les chercheurs doivent en tenir compte lorsqu’ils conçoivent et effectuent des études, tout comme les décideurs lorsqu’ils lisent des rapports d’étude et prennent des décisions. Le présent article explique la signification et l’importance du biais épidémiologique en santé publique et montre comment il survient et ce qu’on peut faire pour l’atténuer. Des exemples de comptabilisation des participants à une réunion, exemples proches de la réalité de nombreux décideurs, sont utilisés tout au long de l’article pour illustrer le biais en général, l’erreur aléatoire et l’erreur systématique, l’effet de la taille de l’échantillon, les trois principales catégories de biais (sélection, information et facteurs de confusion), la stratification et la modélisation mathématique.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rothman KJ, Greenland S. Modern Epidemiology. Philadelphia, PA: Lippincott-Raven Publishers, 1998.Google Scholar
  2. 2.
    MacMahon B, Trichopoulos D. Epidemiology: Principles and Methods. Boston, MA: Little, Brown and Company, 1996.Google Scholar
  3. 3.
    Beaglehole R, Bonita R, Kjellstrom T. Basic Epidemiology. Geneva, Switzerland: World Health Organization, 1993.Google Scholar
  4. 4.
    Monson RR. Occupational Epidemiology. Boca Raton, FL: CRC Press, Inc., 1990.Google Scholar
  5. 5.
    Breslow NE, Day NE. Statistical Methods in Cancer Research, Volume II. Lyon, France: IARC, 1987.Google Scholar
  6. 6.
    Kleinbaum DG, Kupper LL, Morgenstern H. Epidemiologic Research: Principles and Quantitative Methods. Belmont, CA: Lifetime Learning Publications, 1982.Google Scholar
  7. 7.
    Schlesselman JJ. Case-control Studies: Design, Conduct, Analysis. New York, NY: Oxford University Press, 1982.Google Scholar
  8. 8.
    Fleiss JL. Statistical Methods for Rates and Proportions. New York, NY: John Wilen & Sons, 1981.Google Scholar
  9. 9.
    Breslow NE, Day NE. Statistical Methods in Cancer Research, Volume I. Lyon, France: IARC, 1980.Google Scholar
  10. 10.
    Choi BCK, Pak AWP. A catalog of biases in questionnaires. Prev Chron Dis 2005;2:1–13 (Available on-line at: https://doi.org/www.cdc.gov/ pcd/issues/2005/jan/04_0050.htm).Google Scholar
  11. 11.
    Delgado-Rodriguez M, Llorca J. Bias. J Epidemiol Community Health 2004;58:635–41.CrossRefGoogle Scholar
  12. 12.
    Choi BCK, Pak AWP. Bias, overview. In: Armitage P, Colton T (Eds.), Encyclopaedia of Biostatistics, Volume 1. Chichester, England: John Wiley & Sons, 1998;331–38.Google Scholar
  13. 13.
    Choi BCK, Noseworthy AL. Classification, direction and prevention of bias in epidemiologic research. J Occup Med 1992;34:265–71.CrossRefGoogle Scholar
  14. 14.
    Sackett DL. Bias in analytic research. J Chron Dis 1979;32:51–63.CrossRefGoogle Scholar
  15. 15.
    Last JM. A Dictionary of Epidemiology. New York, NY: Oxford University Press, 2001.Google Scholar
  16. 16.
    Choi BCK, de Guia N, Walsh P. Look before your leap: Stratify before you standardize. Am J Epidemiol 1999;149:1087–96.CrossRefGoogle Scholar
  17. 17.
    Choi BCK, Howe GR. Methodological issues in case-control studies: IV. Validity and efficiency of various analysis strategies for continuous variables using the unconditional logistic regression model. Int J Epidemiol 1984;13:526–32.CrossRefGoogle Scholar
  18. 18.
    Larson HJ. Introduction to the Theory of Statistics. New York, NY: John Wiley & Sons, Inc., 1973.Google Scholar
  19. 19.
    Wonnacott TH, Wonnacott RJ. Introductory Statistics. New York, NY: John Wiley & Sons, Inc., 1969.Google Scholar

Copyright information

© The Canadian Public Health Association 2005

Authors and Affiliations

  1. 1.Public Health Agency of CanadaGovernment of CanadaOttawaCanada
  2. 2.Office of Institutional ResearchUniversity of OttawaCanada

Personalised recommendations