Advertisement

Canadian Journal of Public Health

, Volume 89, Supplement 1, pp S41–S46 | Cite as

Agents perturbateurs du système endocrinien et développement de l’appareil reproducteur chez le foetus et chez l’enfant : y a-t-il lieu de s’inquiéter?

  • Warren G. FosterEmail author
Article

Abrégé

Les rapports portant sur la diminution de la qualité du sperme et sur l’augmentation des taux d’anomalies du développement de l’appareil reproducteur mâle, conjointement à une augmentation de l’incidence du cancer des testicules, ont centré l’attention sur les substances chimiques anthropiques en tant que facteurs potentiels de causalité. Selon une hypothèse biologiquement plausible, les substances chimiques anthropiques agiraient comme perturbateurs endocriniens par leur interaction avec le récepteur d’oestrogènes aboutissant à une altération du développement de l’appareil reproducteur. Les éléments de preuve disponibles laissent penser que ce mécanisme peut ne jouer qu’un rôle mineur sur les prétendus effets négatifs décrits jusqu’à présent. Toutefois, les substances chimiques anthropiques peuvent induire des effets préjudiciables sur la santé par des mécanismes indépendants du récepteur d’oestrogènes. D’ailleurs, on a montré que les substances chimiques anthropiques induisaient des effets négatifs sur la fonction thyroïdienne et sur les processus dépendant des androgènes dans des études faites sur les animaux. Partant, il serait peut-être trop simpliste de s’en tenir aux analogues oestrogéniques, et d’autres mécanismes pourraient être plus éclairants vu les niveaux d’exposition des glandes-cibles et la puissance des substances toxiques. Avant de conclure que les substances chimiques anthropiques posent peu ou pas de risque au développement de l’appareil reproducteur chez le foetus et chez l’enfant, il sera nécessaire à tout le moins de s’assurer 1) que les scénarios d’exposition prennent en compte le stade du développement le plus sensible, 2) que les cibles endocriniennes soient évaluées pour connaître les effets potentiels, et 3) que le rôle des niveaux biologiques et environnementaux des mélanges chimiques dans les effets négatifs sur la santé soit évalué. En raison du potentiel d’exposition, de la sensibilité de l’appareil reproducteur pendant son développement, de certaines données pouvant indiquer un rôle possible des substances chimiques anthropiques dans les anomalies du développement de l’appareil reproducteur, ainsi que des nombreuses questions de recherche en suspens, on conclut qu’il y a matière à s’inquiéter

Bibliographie

  1. 1.
    Mably T, Bjerke D, Moore R, et al. In utero and lactational exposure of male rats to 2,3,7,8,-Tetrachlorodibenzo-p-dioxin. 2. Effects on sexual behavior and the regulation of luteinizing hormone secretion in adulthood. Toxicol Appl Pharmacol 1992;114:108–17.CrossRefGoogle Scholar
  2. 2.
    Peterson R, Theobald H, Kimmel G. Developmental and reproductive toxicity of dioxins and related compounds: Cross-species comparisons. Crit Rev Toxicol 1993;23:283–335.CrossRefGoogle Scholar
  3. 3.
    Bjerke DL, Peterson, RE. Reproductive toxicity of 2,3,7,8-Tetrachlorodibenzo-p-dioxin in male rats: Different effects of in utero versus lactational exposure. Toxicol Appl Pharmacol 1994;127:241–49.CrossRefGoogle Scholar
  4. 4.
    Bjerke DL, Sommer RJ, Moore RW, et al. Effects of in utero and lactational 2,3,7,8-tetrachlorodibenzo- p-dioxin exposure on responsiveness of the male rat reproductive system to testosterone stimulation in adulthood. Toxicol Appl Pharm 1994;127:250–57.CrossRefGoogle Scholar
  5. 5.
    Mably TA, Bjerke DL, Moore RW, et al. In utero and lactational exposure of male rats to 2,3,7,8-tetrachlorodibenzo-p-dioxin. 3. Effects on spermatogenesis and reproductive capability. Toxicol Appl Pharm 1992;114:118–26.CrossRefGoogle Scholar
  6. 6.
    Herbst AL, Ulfelder H, Poskanzer, DC. Adenocarcinoma of the vagina. Association of maternal stilbestrol therapy with tumour appearance in young women. New Engl J Med 1971;284:878–81.CrossRefGoogle Scholar
  7. 7.
    Arai Y, Mori T, Suzuki Y, et al. Long-term effects of perinatal exposure to sex steroids and diethylstilbestrol on the reproductive system of male mammals. Int Rev Cytol 1983;84:235–68.CrossRefGoogle Scholar
  8. 8.
    Newbold R. Cellular and molecular effects of developmental exposure to diethylstilbestrol: Implications for other environmental estrogens. Environ Health Perspect 1995;103(Suppl 7):83–87.PubMedPubMedCentralGoogle Scholar
  9. 9.
    McLachlan, JA. Functional toxicology: A new approach to the detection of biologically active xenobiotics. Environ Health Perspect 1993;101:386–87.CrossRefGoogle Scholar
  10. 10.
    Källén B, Bertollini R, Castilla E, et al. A joint international study on the epidemiology of hypospadias. Acta Paediatr Scand Suppl 1986;324:5–52.Google Scholar
  11. 11.
    Chilvers C, Pike MC, Forman D, et al. Apparent doubling of frequency of undescended testis in England and Wales in 1962–81. Lancet 1984;ii:330–32.CrossRefGoogle Scholar
  12. 12.
    Jackson MB, and the John Radcliff Hospital Cryptorchidism Research Group. The epidemiology of cryptorchidism. Horm Res 1988;30:153–56.CrossRefGoogle Scholar
  13. 13.
    Ansell PE, Bennett V, Bull D, et al. Cryptorchidism: A prospective study of 7500 consecutive male births, 1984–8. Arch Dis Child 1992;67:892–99.CrossRefGoogle Scholar
  14. 14.
    Boyle P, Kaye SB, Robertson, AG. Changes in testicular cancer in Scotland. Eur J Cancer Clin Oncol 1987;23:827–30.CrossRefGoogle Scholar
  15. 15.
    Berkowitz GS, Lapinski, RH. Risk factors for cryptorchidism: A nested case-control study. Paediatr Perinat Epidemiol 1996;10:39–51.CrossRefGoogle Scholar
  16. 16.
    Moller H, Skakkebaek, NE. Risks of testicular cancer and cryptorchidism in relation to socioeconomic status and related factors: Case-control studies in Denmark. Int J Cancer 1996;66:287–93.CrossRefGoogle Scholar
  17. 17.
    Berkowitz GS, Lapinski RH, Godbold JH, et al. Maternal and neonatal risk factors for cryptorchidism. Epidemiol 1996;6:127–31.CrossRefGoogle Scholar
  18. 18.
    Sutherland RW, Wiener JS, Hicks JP, et al. Androgen receptor gene mutations are rarely associated with isolated penile hypospadias. J Urol 1996;156:828–31.CrossRefGoogle Scholar
  19. 19.
    Bentvelsen FM, Brinklman AO, van der Linden JE, et al. Decreased immunoreactive androgen receptor levels are not the cause of isolated hypospadias. Br J Urol 1995;76:384–88.CrossRefGoogle Scholar
  20. 20.
    Allera A, Herbst MA, Griffin JE, et al. Mutations of the androgen receptor coding sequence are infrequent in patients with isolated hypospadias. J Clin Endocrinol Metab 1995;80:2697–99.PubMedGoogle Scholar
  21. 21.
    Colborn T, Clement C. Chemically-induced Alterations in Sexual and Functional Development: The Wildlife/Human Connection. Princeton: Princeton Scientific Publishing, 1992.Google Scholar
  22. 22.
    Giwercman A, Skakkebaek, NE. The human testis — an organ at risk? Intl J Androl 1992;15:373–75.CrossRefGoogle Scholar
  23. 23.
    Sharpe RM, Skakkebaek, NE. Are oestrogens involved in falling sperm counts and disorders of the male reproductive tract? Lancet 1993;341:1392–95.CrossRefGoogle Scholar
  24. 24.
    Carlsen E, Giwercman A, Keiding N. Declining semen quality and increasing incidence of testicular cancer: Is there a common cause? Environ Health Perspect 1995;103(Suppl. 7):137–39.CrossRefGoogle Scholar
  25. 25.
    Garcia-Rodriguez J, Garcia-Martin M, Nogueras- Ocana M, et al. Exposure to pesticides and cryptorchidism: Geographical evidence of a possible association. Environ Health Perspect 1996;104:1090–95.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Key TJ, Bull D, Ansell P, et al. A case-control study of cryptorchidism and maternal hormone concentrations in early pregnancy. Br J Cancer 1996;73:698–701.CrossRefGoogle Scholar
  27. 27.
    Imajima T, Shono T, Zakaria O, et al. Prenatal phthalate causes cryptorchidism postnatally by inducing transabdominal ascent of the testis in fetal rats. J Pediatr Surg 1997;32:18–21.CrossRefGoogle Scholar
  28. 28.
    McMahon DR, Kramer SA, Husmann DA, et al. Antiandrogen induced cryptorchidism in the pig is associated with failed gubernacular regression and epididymal malformations. J Urol 1995;154:553–57.CrossRefGoogle Scholar
  29. 29.
    Guillette J, Gross T, Masson G, et al. Developmental abnormalities of the gonad and abnormal sex hormone concentrations in juvenile alligators from contaminated and control lakes in Florida. Environ Health Perspect 1994;102:680–88.CrossRefGoogle Scholar
  30. 30.
    Vonier PM, Crain DA, McLachlan JA, et al. Interaction of environmental chemicals with the estrogen and progesterone receptors from the oviduct of the American alligator. Environ Health Perspect 1996;104:1318–22.CrossRefGoogle Scholar
  31. 31.
    Fox GA, Collins B, Hayakawa E. Reproductive outcomes in colonial fish-eating birds: A biomarker for developmental toxicants in Great Lakes food chains. J Great Lakes Res 1991;17:158–67.CrossRefGoogle Scholar
  32. 32.
    Fry, DM. Reproductive effects in birds exposed to pesticides and industrial chemicals. Environ Health Perspect 1995;103(Suppl. 7):165–71.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Leatherland, JF. Field observations on reproductive and developmental dysfunction in introduced and native salmonids from the Great Lakes. J Great Lakes Res 1993;19:737–51.CrossRefGoogle Scholar
  34. 34.
    Geisy JP, Ludwig JP, Tillitt, DE. Deformities of birds in the Great Lakes region: Assigning causality. Environ Sci Technol 1994;28:128A–135A.Google Scholar
  35. 35.
    Kelce WR, Stone CR, Laws SC, et al. Persistent DDT metabolite p,p’— DDE is a potent androgen receptor antagonist. Nature 1995;375:581–85.CrossRefGoogle Scholar
  36. 36.
    Kelce WR, Monosson E, Gamcsik MP, et al. Environmental hormone disruptors: Evidence that vinclozolin developmental toxicity is mediated by antiandrogenic metabolites. Toxicol Appl Pharmacol 1994;126:276–85.CrossRefGoogle Scholar
  37. 37.
    Hughes Jr. CL. Phytochemical mimicry of reproduction hormones and modulation of herbivore fertility by phytoestrogens. Environ Health Perspect 1988;78:171–75.CrossRefGoogle Scholar
  38. 38.
    Safe, SH. Do environmental estrogens play a role in development of breast cancer in women and male reproductive problems? Human Ecol Risk Assessment 1995a;1:17–23.CrossRefGoogle Scholar
  39. 39.
    Safe, SH. Environmental and dietary estrogens and human health: Is there a problem? Environ Health Perspect 1995b;103:346–51.CrossRefGoogle Scholar
  40. 40.
    Murphy, PA. Phytoestrogen content of processed soybean products. Food Technol 1982;36:60–64.Google Scholar
  41. 41.
    Messina M, Messina V. Increasing use of soyfoods and their potential role in cancer prevention. J Am Diet Assoc 1991;91:836–40.PubMedGoogle Scholar
  42. 42.
    Venkataraman PS, Neylen MJ, Carlson J, et al. Urinary phytoestrogen excretion in infants; differences between human milk, cow milk based, and soy based formula fed infants. Ped Res 1993;33:312A Abstract#1853.Google Scholar
  43. 43.
    Cruz MLA, Wong WW, Mimouni F, et al. Effects of infant nutrition on cholesterol synthesis rates. Ped Res 1994;35:135–40.CrossRefGoogle Scholar
  44. 44.
    Bradbury RB, White DE, Estrogens and related substances in plants. In: Harris RS, Marrian GF, Thimann KV (Eds.), Vitamins and Hormones, Vol. 12. New York: Academic Press, 1954; 205–30.Google Scholar
  45. 45.
    Bickhoff EM, Livingston AL, Hendrickson AP, et al. Relative potencies of several estrogen-like compounds found in forages. Agr Food Chem 1962;10:410–12.CrossRefGoogle Scholar
  46. 46.
    Cassidy A, Bingham S, Setchell K. Biological effects of a diet of soy protein rich in isoflavones on the menstrual cycle of premenopausal women. Am J Clin Nutr 1994;60:333–40.CrossRefGoogle Scholar
  47. 47.
    Aldercreutz H, Höckerstedt K, Bannwart C, et al. Effect of dietary components, including lignans and phytoestrogens, on enterohepatic circulation and liver metabolism of estrogens and on sex hormone binding globulin (SHBG). J Steroid Biochem 1987;27:1135–44.CrossRefGoogle Scholar
  48. 48.
    Aldercreutz H, Mousavi Y, Clark J, et al. Dietary phytoestrogens and cancer: In vitro and in vivo studies. J Steroid Biochem 1992;41:331–37.CrossRefGoogle Scholar
  49. 49.
    Pedersen AB, Bartholomew M, Dolence LA, et al. Menstrual differences due to vegetarian and nonvegetarian diets. Am J Clin Nutr 1991;53:879–85.CrossRefGoogle Scholar
  50. 50.
    Setchell KDR. Naturally occurring nonsteroidal estrogens of dietary origin. In: McLachlan JA (Ed.), Estrogens in the Environment. New York: Elsevier, 1985; 69–85.Google Scholar
  51. 51.
    Baker, ME. Origins of regulation of gene transcription by steroid, retinoid and thyroid hormones. In: Hochberg RB, Naftolin F (Eds.), The New Biology of Steroid Hormones. New York: Raven Press, 1991; 187–202.Google Scholar
  52. 52.
    Akiyama T, Ishida J, Nakagawa S, et al. Genistein, a specific inhibitor of tyrosine- specific protein kinases. J Biol Chem 1987;262:5592–95.PubMedGoogle Scholar
  53. 53.
    Petersen TG, Barnes S. Genistein inhibition of the growth of human breast cancer cells: Independence from estrogen receptors and the multidrug resistance gene. Biochem Biophys Res Comm 1991;179:661–67.CrossRefGoogle Scholar
  54. 54.
    Makela S, Poutanen M, Lehtimaki J, et al. Estrogen-specific 17 β-hydroxysteroid oxidoreductase type 1 (E.C. 1.1.1.62) as a possible target for the action of phytoestrogens. Proc Soc Expl Biol Med 1995;208:51–59.CrossRefGoogle Scholar
  55. 55.
    Kaldas RS, Hughes, CL. Reproductive and general metabolic effects of phytoestrogens in mammals. Reprod Toxicol 1989;3:81–89.CrossRefGoogle Scholar
  56. 56.
    Faber KA, Hughes, CL. The effect of neonatal exposure to diethylstilboestrol, genistein and zearalenone on pituitary responsiveness and sexually dimorphic nucleus volume in the castrated adult rat. Biol Reprod 1991;45:649–53.CrossRefGoogle Scholar
  57. 57.
    Faber KA, Hughes Jr. CL. Dose-response characteristics of neonatal exposure to genistein on pituitary responsiveness to gonadotropin releasing hormone and volume of sexually dimorphic nucleus of the preoptic area (SDN-POA) in postpubertal castrated female rats. Reprod Toxicol 1993;7:35–40.CrossRefGoogle Scholar
  58. 58.
    Wade MG, Desaulniers D, Leingartner K, et al. Interactions between endosulfan and dieldrin on estrogen-mediated processes in vitro and in vivo. Reprod Toxicol 1997;11:791–98.CrossRefGoogle Scholar
  59. 59.
    Soto AM, Chung KL, Sonnenschein C. The pesticides endosulfan, toxaphene, and dieldrin have estrogenic effects on human estrogen-sensitive cells. Environ Health Perspect 1994;102:380–83.CrossRefGoogle Scholar
  60. 60.
    Desaulniers D, Leingartner K, Zacharewski T, et al. Optimization of an MCF7-E3 cell proliferation assay and effects of environmental pollutants and industrial chemicals. Toxicol In Vitro 1998;(In press).Google Scholar
  61. 61.
    Haines DA, Laube V, Jordan S, et al. Exposure assessment of priority contaminants for Canadian Great Lakes Basin residents. Environ Res 1998; (In press).Google Scholar
  62. 62.
    vom Saal FS, Bronson F. In utero proximity of female house mouse fetuses to male: Effect on reproductive performance during later life. Biol Reprod 1978;19:842–53.CrossRefGoogle Scholar
  63. 63.
    vom Saal FS, Bronson F. Sexual characteristics of adult female mice are correlated with their blood testosterone levels during prenatal development. Science 1980;208:597–99.CrossRefGoogle Scholar
  64. 64.
    Clemens L, Gladue B, Coniglio L. Prenatal endogenous androgenic influences on masculine sexual behavior and genital morphology in male and female rats. Horm Behav 1978;10:40–53.CrossRefGoogle Scholar
  65. 65.
    vom Saal, FS. The production of and sensitivity to cues that delay puberty and prolong subsequent oestrous cycles in female mice are influenced by prior intrauterine position. J Reprod Fertil 1989;86:457–71.CrossRefGoogle Scholar
  66. 66.
    Rohde-Parfet K, Ganjam V, Lamberson W, et al. Intrauterine position effects in female swine: Subsequent reproductive performance, and social and sexual behavior. Appl Anim Behav Sci 1990;26:349–62.CrossRefGoogle Scholar
  67. 67.
    vom Saal FS, Quadagno DM, Even MD, et al. Paradoxical effects of maternal stress on fetal steroids and postnatal reproductive traits in female mice from different intrauterine positions. Biol Reprod 1990;43:751–61.CrossRefGoogle Scholar
  68. 68.
    vom Saal FS, Timms BG, Montano, MM. Prostate enlargement in mice due to fetal exposure to low doses of estradiol or diethylstilboestrol and opposite effects at high doses. Proc Natl Acad Sci USA 1997;94:2056–61.CrossRefGoogle Scholar
  69. 69.
    Foster WG, Pentick JA, McMahon A, et al. Body distribution and endocrine toxicity of hexachlorobenzene (HCB) in the female rat. J Appl Toxicol 1993;13:79–83.CrossRefGoogle Scholar
  70. 70.
    Orth J. Proliferation of Sertoli cells in fetal and postnatal rats: A quantitative autoradiographic study. Anat Rec 1982;203:485–93.CrossRefGoogle Scholar
  71. 71.
    Orth JM, Gunsalus GL, Lamperti, AA. Evidence from Sertoli cell-depleted rats indicates that spermatid number in adults depends on numbers of Sertoli cells produced during perinatal development. Endocrinol 1988;122:787–94.CrossRefGoogle Scholar
  72. 72.
    Cooke PS, Zhao Y, Hansen, LG. Neonatal polychlorinated biphenyl treatment increases adult testis size and sperm production in the rat. Toxicol Appl Pharmacol 1996;136:112–17.CrossRefGoogle Scholar
  73. 73.
    van den Berg, KJ. Interaction of chlorinated phenols with thyroxine binding sites of human transthyretin, albumin and thyroid binding globulin. Chem Biol Interactions 1990;76:63–75.CrossRefGoogle Scholar
  74. 74.
    van Raaij JAGM, van den Berg KJ, Engel R, et al. Effects of hexachlorobenzene and its metabolites pentachlorophenol and tetrachlorohydroquinone on serum thyroid hormone levels in rats. Toxicol 1991;67:107–16.CrossRefGoogle Scholar
  75. 75.
    Gray Jr. LE, Ostby J, Marshall R, et al. Reproductive and thyroid effects of low-level polychlorinated biphenyl (Aroclor 1254) exposure. Fund Appl Toxicol 1993;20:288–294.CrossRefGoogle Scholar
  76. 76.
    Li X, Johnson D, Rozman K. Reproductive effects of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) in female rats: Ovulation, hormonal regulation, and possible mechanism(s). Toxicol Appl Pharmacol 1995;133:321–27.CrossRefGoogle Scholar
  77. 77.
    Arnold SF, Klotz DM, Collins BM, et al. Synergistic activation of estrogen receptor with combinations of environmental chemicals. Science 1996;272:1489–92.CrossRefGoogle Scholar
  78. 78.
    Ashby J, Lefevre PA, Odum J, et al. Synergy between synthetic oestrogens? Nature 1997;385:494.CrossRefGoogle Scholar
  79. 79.
    Ramamoorthy K, Wang F, Chen I, et al. Estrogenic activity of a dieldrin/toxaphene mixture in the mouse uterus, MCF-7 human breast cancer cells, and yeast-based estrogen receptor assays: No apparent synergism. Endocrinol 1997;138:1520–27.CrossRefGoogle Scholar
  80. 80.
    Gyorkos J, Denomme MA, Leece B, et al. Reconstituted halogenated hydrocarbon pesticide and pollutant mixtures found in human tissues: Effects on the immature male Wistar rat after short term exposure. Can J Physiol Pharmacol 1985;63:36–43.CrossRefGoogle Scholar
  81. 81.
    Heindel JJ, Chapin RE, George J, et al. Assessment of the reproductive toxicity of a complex mixture of 25 groundwater contaminants in mice and rats. Fund Appl Toxicol 1995;25:9–19.CrossRefGoogle Scholar

Copyright information

© The Canadian Public Health Association 1998

Authors and Affiliations

  1. 1.Division des intoxications environnementales et professionnelles, Bureau des dangers des produits chimiques, Direction de l’hygiène du milieudirection générale de la protection de la santéCanada
  2. 2.Environmental Health Centre, Pré TunneyOttawaCanada

Personalised recommendations