Advertisement

Canadian Journal of Public Health

, Volume 89, Supplement 1, pp S34–S40 | Cite as

Questions de neurotoxicologie au cours du développement : interprétation et implications des données

  • Deborah C. RiceEmail author
Article

Abrégé

On accorde de plus en plus d’attention au potentiel qu’ont les contaminants de l’environnement d’engendrer des déficits neurologiques, cognitifs ou comportementaux suite à une exposition pendant le développement. L’attention est passée de la toxicité visible chez relativement peu d’individus à des insuffisances plus subtiles présentes chez un beaucoup plus grand nombre d’enfants. Cette évolution a amené une reconnaissance du fait que des déficits subtils comme un petite diminution du QI peuvent avoir de grandes répercussions sur la société lorsqu’elle touche un grand nombre d’enfants. Ainsi, une diminution d’1 μg/dl de la concentration de plomb dans le sang chez les enfants américains dont les concentrations atteignent de 10 à 20 μg/dl pourrait se traduire par des économies de 5 à 7,5 milliards de dollars américains par année, en revenus supplémentaires uniquement. En outre, des problèmes de comportement comme l’augmentation de l’aggressivité et les difficultés d’adaptation sociale identifiés dès la petite enfance peuvent s’aggraver et devenir à la longue de graves comportements antisociaux comme la délinquance à l’approche de la puberté. L’exposition à des agents neurotoxiques pendant le développement ou au cours d’une partie importante de la vie peuvent aussi aboutir à une progression accélérée des maladies neurodégénératives reliées à l’âge. Pareils changements aux capacités de fonctionnement d’un segment important de la population peuvent avoir des conséquences graves pour la société ainsi que pour les individus touches

Bibliographie

  1. 1.
    OTA (Office of Technology Assessment). Neurotoxicity: Identifying and Controlling Poisons of the Nervous System. U.S. Congress, Washington D.C.: U.S. Government Printing Office, 1990;43–59.Google Scholar
  2. 2.
    U.S. National Research Council. Environment Neurotoxicology. Washington, D.C.: National Academy Press, 1992.Google Scholar
  3. 3.
    IPCS. Environmental Health Criteria 165: Inorganic Lead. International Programme on Chemical Safety. Geneva: World Health Organization, 1995.Google Scholar
  4. 4.
    World Health Organization. Environmental Health Criteria 101: Methylmercury. Geneva: WHO, 1990.Google Scholar
  5. 5.
    Weiss B. Risk assessment: The insidious nature of neurotoxicity and the aging brain. Neurotoxicol 1990;11:305.Google Scholar
  6. 6.
    Schwartz J. Low-level lead exposure and children’s IQ: A meta-analysis and search for a threshold. Environ Res 1994;65:42–55.CrossRefGoogle Scholar
  7. 7.
    Rice, DC. Neurotoxicity of lead: Commonalities between experimental and epidemiological data. Environ Health Perspect 1996;86(Suppl. 2):337–51.Google Scholar
  8. 8.
    Needleman HL (Ed.). Human Lead Exposure. Boca Raton: CRC Press, 1992.Google Scholar
  9. 9.
    Needleman HL, Gunnoe C, Leviton A, et al. Deficits in psychologic and classroom performance of children with elevated dentine lead levels. N Engl J Med 1979;300:689–95.CrossRefGoogle Scholar
  10. 10.
    Yule W, Urbanowicz MA, Lansdown R, Millar IB. Teachers’ ratings of children’s behaviour in relation to blood lead levels. Br J Dev Psychol 1984;2:295.CrossRefGoogle Scholar
  11. 11.
    Tuthill, RW. Hair lead levels related to children’s classroom attention-deficit disorder. Arch Environ Health 1996;51:214–20.CrossRefGoogle Scholar
  12. 12.
    Fergusson DM, Fergusson JE, Horwood LJ, Kinzett, NG. A longitudinal study of dentine lead levels, intelligence, school performance and behaviour. Part III. Dentine lead levels and attention/ activity. J Child Psychol Psychiat 1988;29:811–24.CrossRefGoogle Scholar
  13. 13.
    Muñoz H, Romie D, Palazuelos E, et al. Blood lead level and neurobehavioural development among children living in Mexico City. Arch Environ Health 1993;48(30):132–39.CrossRefGoogle Scholar
  14. 14.
    Thomson G, Raab G, Hepburn W, et al. Bloodlead levels and children’s behaviour — Results from the Edinburgh lead study. J Child Psychol Psychiat 1989;30:515–28.CrossRefGoogle Scholar
  15. 15.
    Silva PA, Hughes P, Williams S, Faed, JM. Blood lead, intelligence, reading attainment, and behaviour in eleven-year-old children in Dunedin, New Zealand. J Child Psychol Psychiat 1988;29:43–52.CrossRefGoogle Scholar
  16. 16.
    Wasserman G, Jaramilo B, Shrout P, Graziano J. Lead exposure and child behaviour problems at age 3 years. Paper presented at the 1995 Society for Research in Child Development, Indianapolis.Google Scholar
  17. 17.
    Leviton A, Bellinger D, Allred EN, et al. Pre- and postnatal low-level lead exposure and children’s dysfunction in school. Environ Res 1993;60:30–43.CrossRefGoogle Scholar
  18. 18.
    Winneke G, Altmann L, Krämer U, et al. Neurobehavioural and neurophysiological observations in six year old children with low lead levels in East and West Germany. Neurotoxicol 1994;15:705–14.Google Scholar
  19. 19.
    Winneke G, Brockhaus A, Ewers U, et al. Results from the European multicenter study on lead neurotoxicity in children: Implications for risk assessment. Neurotoxicol Teratol 1990;12:553–59.CrossRefGoogle Scholar
  20. 20.
    Winneke G, Brockhaus A, Collet W, Kraemer V. Modulation of lead-induced performance deficit in children by varying signal rate in a serial choice reaction task. Neurotoxicol Teratol 1989;11:587–92.CrossRefGoogle Scholar
  21. 21.
    Winneke G, Kraemer V, Brockhaus A, et al. Neuropsychologic studies in children with elevated tooth-lead concentrations. II. Extended study. Int Arch Occup Envir Health 1983;51:231–52.CrossRefGoogle Scholar
  22. 22.
    Winneke G, Kraemer V. Neuropsychological effects of lead in children: Interaction with social background variables. Neuropsychobiol 1984;11:195–202.CrossRefGoogle Scholar
  23. 23.
    Hatzakis A, Kokkevi A, Katsouyanni K, et al. Psychometric intelligence and attentional performance deficits in lead-exposed children. In: Lindberg SE and Hutchinson TC (Eds.), Proc 6th Intern Conf Heavy Metals in the Environment, Edinburgh: CEP Consultants, 1987;204–9.Google Scholar
  24. 24.
    Baghurst PA, McMichael AJ, Tong S, et al. Exposure to environmental lead and visualmotor integration at age 7 years: The Port Pirie cohort study. Epidemiol 1995;6:104–9.CrossRefGoogle Scholar
  25. 25.
    Hansen ON, Trillingsgaard A, Beese I, et al. A neuropsychological study of children with elevated dentine lead level: Assessment of the effect of lead in different socio-economic groups. Neurotoxicol Teratol 1989;11:205–14.CrossRefGoogle Scholar
  26. 26.
    Fulton M, Raab G, Thomson G, et al. Influence of blood lead on the ability and attainment of children in Edinburgh. Lancet 1987;1(8544):1221–26.CrossRefGoogle Scholar
  27. 27.
    Fergusson DM, Fergusson JE, Horwood LJ, Kinzett, NG. A longitudinal study of dentine lead levels, intelligence, school performance and behaviour. Part I. Dentine lead levels and exposure to environmental risk factors. J Child Psychol Psychiat 1988;29:781–92.CrossRefGoogle Scholar
  28. 28.
    Fergusson DM, Fergusson JE, Horwood LJ, Kinzett, NG. A longitudinal study of dentine lead levels, intelligence, school performance and behaviour. Part, II. Dentine lead and cognitive ability. J Child Psychol Psychiat 1988;29:783–809.CrossRefGoogle Scholar
  29. 29.
    Yule W, Lansdown R, Millar I, Urbanowicz M. The relationship between blood lead concentration, intelligence, and attainment in a school population: A pilot study. Dev Med Child Neurol 1981;23:567–76.CrossRefGoogle Scholar
  30. 30.
    Fergusson DM, Horwood, LJ. The effects of lead levels on the growth of word recognition in middle childhood. Int J Epidemiol 1993;22:891–97.CrossRefGoogle Scholar
  31. 31.
    Lyngbye T, Hansen OL, Trillingsgaard A, et al. Learning disabilities in children: Significance of low-level lead exposure and confounding factors. Acta Paediatr Scand 1990;79:352–60.CrossRefGoogle Scholar
  32. 32.
    Bellinger D, Needleman HL, Bromfield R, Mintz M. A follow-up study of the academic attainment and classroom behaviour of children with elevated dentine lead levels. Biol Trace Elem Res 1984;6:207–23.CrossRefGoogle Scholar
  33. 33.
    Schwartz J. Societal benefits of reducing lead exposure. Environ Res 1994;66:105–24.CrossRefGoogle Scholar
  34. 34.
    Salkever, DS. Updated estimates of earnings benefits from reduced exposure of children to environmental lead. Environ Res 1995;70:1–6.CrossRefGoogle Scholar
  35. 35.
    Sciarillo W, Alexander A, Farrell K. Lead exposure and child behaviour. Am J Public Health 1992;82:1356–60.CrossRefGoogle Scholar
  36. 36.
    Bellinger D, Leviton A, Allred E, Rabinowitz M. Pre- and postnatal lead exposure and behaviour problems in school-age children. Environ Res 1994;66:12–30.CrossRefGoogle Scholar
  37. 37.
    Needleman HL, Riess JA, Tobin MJ, et al. Bone lead levels and delinquent behaviour. JAMA 1996;275:363–69.CrossRefGoogle Scholar
  38. 38.
    Weiss B, Simon W. Quantitative perspectives on the long-term toxicity of methylmercury and similar poisons. In: Weiss B, Laties VC (Eds.), Behavioural Toxicology. New York: Plenum Press, 1975; 429–38.CrossRefGoogle Scholar
  39. 39.
    Rice, DC. Evidence for delayed neurotoxicity produced by methylmercury. Neurotoxicol 1996;17:583–96.Google Scholar
  40. 40.
    Igata A, Niina K, Hamada R, Ohkatsu Y. The late onset of organic mercury intoxication after exposure. In: Studies on the Health Effects of Alkylmercury in Japan. Japan: Environment Agency, 1975;178–81.Google Scholar
  41. 41.
    Tsubaki T, Irukayama K (Eds.). Minamata Disease. Amsterdam: Elsevier, 1977.Google Scholar
  42. 42.
    Kinjo Y, Higashi H, Nakano A, et al. Profile of subjective complaints and activities of daily living among current patients with Minamata disease after 3 decades. Environ Res 1993;63:241.CrossRefGoogle Scholar
  43. 43.
    Rice, DC. Delayed neurotoxicity in monkeys exposed developmentally to methylmercury. Neurotoxicol 1989;10:645–50.Google Scholar
  44. 44.
    Rice DC, Gilbert, SG. Effects of developmental methylmercury exposure or lifetime lead exposure on vibration sensitivity function in monkeys. Toxicol Appl Pharmacol 1995;134:161.CrossRefGoogle Scholar
  45. 45.
    EDF (Environmental Defense Fund). Toxic Ignorance. Washington, D.C.: EDF Publications, 1997.Google Scholar
  46. 46.
    Schantz, SL. Developmental neurotoxicity of PCBs in humans: What do we know and where do we go from here? Neurotoxicol Teratol 1996;18:217–27.CrossRefGoogle Scholar
  47. 47.
    Rice, DC. Neurotoxicity produced by developmental exposure to PCBs. Mental Retardation Devel Disab Res Rev 1997;3:223–29.CrossRefGoogle Scholar

Copyright information

© The Canadian Public Health Association 1998

Authors and Affiliations

  1. 1.Division de la recherche toxicologique, Bureau d’innocuité des produits chimiques, Direction des aliments, Direction générale de la protection de la santéSanté CanadaCanada

Personalised recommendations