Advertisement

Canadian Journal of Public Health

, Volume 94, Issue 6, pp 417–421 | Cite as

The Status of Drinking Water in Ontario, Canada (1992–1999)

  • Agricola Odoi
  • Jeff Aramini
  • Shannon Majowicz
  • Rob Meyers
  • Wayne S. Martin
  • Paul Sockett
  • Pascal Michel
  • John Holt
  • Jeff Wilson
Article

Abstract

Objective

This study was conducted to investigate the characteristics of public water works (PWW) in southern Ontario with respect to their water sources and treatment regimes.

Methods

Data from 481 PWW covering the period 1992–1999 were collected and cartographic manipulations as well as descriptive analyses of the PWW attributes were performed. Tests of associations between different PWW attributes were done using Fisher’s Exact test and Cochran-Mantel-Haenszel statistics.

Results

Water sources for the PWW included surface water (SW) (21% lakes; 13% rivers), ground water (GW) (64%) and mixed sources (2%). Most (81%) of the population was supplied with SW. Filtration was performed by 84% and 8% of the PWW using SW and GW, respectively. Similarly, disinfection was performed by 99% and 91% of the PWW using SW and GW respectively. There was no significant difference in treatment regimes between PWW in urban and those in rural areas but treatment regime was a function of water source. Overall, most PWW (87.8%) met the minimum treatment requirements of the then Ontario Drinking Water Objectives (ODWO).

Discussion

The study shows that most PWW complied with the minimum treatment requirements of the then ODWO.1 The minimum treatment required by the ODWO was disinfection for GW and both disinfection and filtration for SW. The non-compliant PWW will need to comply for continued provision of safe drinking water. Suffice it to say that both watershed protection and improved water treatment will be imperative for the continued provision of safe drinking water and control of waterborne diseases.

Résumé

Objectif

Étudier les caractéristiques du réseau public d’aqueducs du sud de l’Ontario en ce qui a trait aux sources d’alimentation en eau et aux méthodes de traitement des eaux.

Méthode

Nous avons recueilli les données de 481 installations publiques d’adduction d’eau pour la période 1992–1999 et effectué des manipulations cartographiques et des analyses descriptives des attributs de ces installations. Les associations entre les attributs des diverses installations ont été testées par la méthode exacte de Fisher et le test de Cochran-Mantel-Haenszel.

Résultats

Les sources d’alimentation en eau des installations publiques d’adduction d’eau étaient les eaux de surface (lacs 21 %, rivières 13 %), les eaux souterraines (64 %) et les sources mélangées (2 %). La grande majorité (81 %) de la population était desservie par les eaux de surface. Quatre-vingt quatre p. cent des installations utilisant des eaux de surface faisaient de la filtration, contre 8 % des installations utilisant les eaux souterraines. Par ailleurs, 99 % des installations utilisant des eaux de surface faisaient de la désinfection, contre 91 % des installations utilisant des eaux souterraines. Il n’y avait pas d’écart significatif dans les méthodes de traitement des eaux des installations en zones urbaines et rurales: la méthode choisie dépendait de la source d’alimentation en eau. Dans l’ensemble, la plupart des installations (87,8 %) répondaient aux normes minimales de traitement fixées dans les anciens objectifs de l’Ontario en matière d’eau potable (OOEP).

Débat

L’étude montre que la plupart des installations publiques d’adduction d’eau répondent aux normes minimales de traitement des anciens OOEP, à savoir la désinfection pour les eaux souterraines et la désinfection et la filtration pour les eaux de surface. Les installations non conformes devront se mettre à niveau pour assurer la continuité de l’approvisionnement en eau potable. Contentons-nous de dire que la protection des bassins versants et l’amélioration du traitement de l’eau seront deux éléments indispensables à la continuité de l’approvisionnement en eau potable et au contrôle des maladies d’origine hydrique.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ontario Ministry of the Environment. Ontario Drinking Water Objectives. Revised 1994. Queen’s Printer for Ontario, 1999.Google Scholar
  2. 2.
    Auslander BA, Langlois PH. Toronto tap water: Perception of its quality and use of alternatives. Can J Public Health 1993;84:99–102.PubMedGoogle Scholar
  3. 3.
    Anon. Waterborne outbreak of gastroenteritis associated with a contaminated municipal water supply, Walkerton, Ontario, May-June 2000. Can Commun Dis Rep 2000;26(20):170–73.Google Scholar
  4. 4.
    Anon. Ontario Ministry of the Environment. Technical Report on the Status of Walkerton Water Supply System. Queen’s Printer for Ontario, 2000; PIBS 4000E-01 (vol 1).Google Scholar
  5. 5.
    Gibson B. Our drinking water: A cause for concern? CMAJ 1991;144:226,228.PubMedPubMedCentralGoogle Scholar
  6. 6.
    O’Connor DR, Commissioner. The Walkerton Inquiry [Web Page]. 2000; Available online at https://doi.org/www.walkertoninquiry.com/. (Accessed 6 July 2001).Google Scholar
  7. 7.
    Aramini J, McLean M, Wilson J, Holt J, Copes R, Allen B, Sears W. Drinking water quality and health-care utilization for gastrointestinal illness in greater Vancouver. Can Commun Dis Rep 2000;26:211–14.PubMedGoogle Scholar
  8. 8.
    The Legislative Assembly of British Columbia. Protecting Drinking-Water Sources, Second Report, 2000.Google Scholar
  9. 9.
    Cantor PK. Epidemiological research priorities on the health risk of drinking water contaminants. Environmental Epidemiology: Exposure and Disease. Copenhagen, Denmark: Lewis Publishers, 1996.Google Scholar
  10. 10.
    Ontario Ministry of the Environment. Regulation made under the Ontario Water Resources Act. Drinking Water Protection. 2000; reg2000.0348.e 34-DB/CS. (O.Regulation 459/00).Google Scholar
  11. 11.
    Ontario Ministry of the Environment. Ontario Drinking Water Standards. Revised January 2001. 2001; PIBS # 4065e.Google Scholar
  12. 12.
    Stirling R, Aramini J, Ellis A, Lim G, Meyers R, Fleury M, Werker D. Waterborne cryp-tosporidiosis outbreak, North Battleford, Saskatchewan, Spring 2001. Can Commun Dis Rep 2001;27:185–92.PubMedGoogle Scholar
  13. 13.
    ESRI. ArcView GIS. Version 3.2. Environmental Systems Research Institute, Inc. Redlands, California 1999.Google Scholar
  14. 14.
    SAS Institute. Statistical Analysis System. Version 8.0. Cary, NC: SAS Institute Inc., 1999.Google Scholar
  15. 15.
    Statistics Canada. Postal Code Conversion File. May 1999 Postal Codes. Reference Guide for Catalogue 92F00227XDB. Ottawa, Ontario, 1999.Google Scholar
  16. 16.
    Rose JB. Emerging issues for the microbiology of drinking water. Water Engineering and Management 1990;137:23–29.Google Scholar
  17. 17.
    Anon. Ontario Ministry of the Environment. Ontario Drinking Water Standards (ODWS). Technical Brief. Queen’s Printer for Ontario, 2000; vol PIBS: 3978E 08-00.Google Scholar
  18. 18.
    Korich DG, Mead JR, Madore MS, Sinclair NA, Sterling CR. Effects of ozone, chlorine dioxide, chlorine, and monochloramine on Cryptosporidium parvum oocyst viability. Appl Environ Microbiol 1990;56:1423–28.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Payment P. Poor efficacy of residual chlorine disinfectant in drinking water to inactivate waterborne pathogens in distribution systems. Can J Microbiol 1999;45:709–15.CrossRefGoogle Scholar
  20. 20.
    Craun GF. Surface water supplies and health. J Am Water Works Assoc 1988;80:40–52.CrossRefGoogle Scholar
  21. 21.
    Li S, Zhang X, Liu W, Cao L, Wang Z. Formation and evolution of haloacetic acids in drinking water of Beijing City. J Environ Sci Health Part A Tox Hazard Subst Environ Eng 2001;36:475–81.CrossRefGoogle Scholar
  22. 22.
    Nissinen TK, Miettinen IT, Martikainen PJ, Vartiainen T. Disinfection by-products in Finnish drinking waters. Chemosphere 2002;48:9–20.CrossRefGoogle Scholar
  23. 23.
    Kann J, Gilroy D. Ten Mile Lakes Toxic Microcystis Bloom. September — November 1997. Envoronmental Services and Consultation Center for Environment and Health Systems, 1997.Google Scholar
  24. 24.
    Fischer WJ, Garthwaite I, Miles CO, Ross KM, Aggen JB, Chamberlin AR, et al. Congener-independent immunoassay for microcystins and nodularins. Environ Sci Technol 2001;35:4849–56.CrossRefGoogle Scholar
  25. 25.
    Hitzfeld BC, Hoger SJ, Dietrich DR. Cyanobacterial toxins: Removal during drinking water treatment, and human risk assessment. Environ Health Perspect 2000;108(Suppl 1):113–22.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Ueno Y, Nagata S, Tsutsumi T, Hasegawa A, Watanabe MF, Park HD, et al. Detection of microcystins, a blue-green algal hepatotoxin, in drinking water sampled in Haimen and Fusui, endemic areas of primary liver cancer in China, by highly sensitive immunoassay. Carcinogenesis 1996;17:1317–21.CrossRefGoogle Scholar
  27. 27.
    Zhou L, Yu H, Chen K. Relationship between microcystin in drinking water and colorectal cancer. Biomed Environ Sci 2002;15:166–71.PubMedGoogle Scholar
  28. 28.
    Zhou L, Yu D, Yu H, et al. Drinking water types, microcystins and colorectal cancer. Zhonghua Yu Fang Yi Xue Za Zhi 2000;34:224–26.PubMedGoogle Scholar

Copyright information

© The Canadian Public Health Association 2003

Authors and Affiliations

  • Agricola Odoi
    • 1
  • Jeff Aramini
    • 1
    • 2
  • Shannon Majowicz
    • 2
  • Rob Meyers
    • 2
  • Wayne S. Martin
    • 1
  • Paul Sockett
    • 2
  • Pascal Michel
    • 3
  • John Holt
    • 4
  • Jeff Wilson
    • 1
    • 2
    • 5
  1. 1.Department of Population MedicineUniversity of GuelphGuelphCanada
  2. 2.Division of Enteric, Foodborne and Waterborne DiseasesCanada
  3. 3.Université de Montréal, St-HyacintheCanada
  4. 4.Department of Mathematics and StatisticsUniversity of GuelphCanada
  5. 5.Department of Population MedicineUniversity of GuelphGuelphCanada

Personalised recommendations