Canadian Journal of Public Health

, Volume 93, Issue 4, pp 267–270 | Cite as

Dietary Iron as a Risk Factor for Myocardial Infarction

Public Health Considerations for Nova Scotia
  • Darshaka Malaviarachchi
  • Paul J. VeugelersEmail author
  • Alexandra M. Yip
  • David R. MacLean


Background: Epidemiological and experimental studies have suggested that high levels of dietary iron and hemeiron can lead to myocardial injury. Lean meat, a primary source of iron and hemeiron, is promoted because it is lower in fat and cholesterol. Does lean meat put us at risk for myocardial infarction, and should we reconsider its promotion?

Methods: We analyzed the importance of dietary iron and hemeiron as a risk for myocardial infarction among 2,198 Nova Scotians who participated in a nutrition survey and who were followed for eight years, using logistic regression.

Results: Acute myocardial infarction incidents occurred in 94 (4.3%) participants. We found no increased risk for myocardial infarction associated with high intake of iron and hemeiron.

Conclusions: Based on Nova Scotian data showing no increased risk for myocardial infarction with high intake of iron and hemeiron, there is no need for immediate reconsideration of promotion of lean meat.


Contexte: Des études épidémiologiques et expérimentales ont suggéré que de hauts niveaux de fer diététique peuvent mener à un accident du myocarde. La viande maigre, une source importante de fer diététique, est favorisée, grâce à un niveau de graisse et de cholestérol relativement bas. Cela nous met-il en danger d’avoir un infarctus du myocarde et devrions-nous reconsidérer la promotion de la viande maigre?

Méthode: Nous avons examiné la relation entre le fer diététique ou érythrocytaire et le risque d’un infarctus aigu du myocarde parmi 2 198 participants d’une enquête alimentaire à la NouvelleÉcosse.

Résultats: Parmi ces individus, il y a eu 94 incidents d’infarctus aigus du myocarde pendant une période de huit ans. Ayant ajusté pour les variables confondants, nous n’avons trouvé aucune augmentation du risque d’un infarctus aigu associée avec une ration alimentaire élevée en fer diététique et érythrocytaire.

Conclusions: Étant donné le style de vie et les habitudes alimentaires des Néo-Écossais, il n’y a pas lieu de reconsidérer la promotion de la viande maigre.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Food and Nutrition Board, Institute of Medicine, National Academies. Dietary References Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. National Academy of Sciences, Available on line at, November, 2001.Google Scholar
  2. 2.
    Bernier M, Hearse DJ, Manning AS. Reperfusion-induced arrhythmias and oxygenderived free radicals. Studies with “anti-free radical” interventions and a free radical-generating system in the isolated perfused rat heart. Circ Res 1986;58:331–40.CrossRefGoogle Scholar
  3. 3.
    Van der Kraaij AMM, Mostert LJ, Van Eijk HG, Koster, JF. Iron load increases the susceptibility of rat hearts to oxygen reperfusion damage: Protection by the antioxidant (+) — cyanidanol-3 and deferoxamine. Circulation 1988;78:442–49.CrossRefGoogle Scholar
  4. 4.
    Sullivan, JL. Iron and the sex difference in heart disease risk. Lancet 1981;1:1293–94.CrossRefGoogle Scholar
  5. 5.
    Salonen JT, Nyyssonen K, Korpela H, Tuomilehto J, Seppanen R, Salonen R. High stored iron levels are associated with excess risk of myocardial infarction in eastern Finnish men? Circulation 1992;86(3):803–11.CrossRefGoogle Scholar
  6. 6.
    Klor HU, Hauenschild A, Holbach I, Schnell-Kretschmer H, Stroh S. Nutrition and cardiovascular disease. European J Med Research 1997;2:243–57.Google Scholar
  7. 7.
    Groff JL, Gropper SS, Hunt, SM. Advanced Nutrition and Human Metabolism. Second Edition. St. Paul, Minnesota: West Publishing Company, 1995.Google Scholar
  8. 8.
    Liao Y, Cooper RS, McGee, DL. Iron status and coronary heart disease: Negative findings from the NHANES I Epidemiologic Follow-up Study? Am J Epidemiol 1994;139(7):704–12.CrossRefGoogle Scholar
  9. 9.
    Ascherio A, Willett WC, Rimm EB, Giovannucci EL, Stampfer, MJ. Dietary iron intake and risk of coronary disease among men. Circulation 1993;89(3):969–74.CrossRefGoogle Scholar
  10. 10.
    Tzonou A, Lagiou P, Tsoutsos V, Trichopoulos D. Dietary iron and coronary heart disease risk: A study from Greece. Am J Epidemiol 1998;147(2):161–66.CrossRefGoogle Scholar
  11. 11.
    Fitzsimons EJ, Kaplan K. Rapid drop in serum iron concentration in myocardial infarction. Am J Clin Pathology 1979;73(4):552–55.CrossRefGoogle Scholar
  12. 12.
    van der Schouw YT, van der Veeken PMWC, Kok FJ, Foster JF, Schouten EG, Hofman A. Iron status in the acute phase and six weeks after myocardial infarction. Free Radic Biol Med 1990;8:47–53.CrossRefGoogle Scholar
  13. 13.
    Sullivan, JL. Letter to the Editor. Stored iron levels and myocardial infarction at a young age. Limitations of the study design. Atherosclerosis 1994;113:125–27.CrossRefGoogle Scholar
  14. 14.
    Sempos CT, Looker AC, Gillum RF, Makuc DM. Body iron stores and the risk of coronary heart disease. N Engl J Med 1994;330:1119–24.CrossRefGoogle Scholar
  15. 15.
    Magnusson MK, Sigfusson N, Sigvaldason H, Johannesson GM, Magnusson S, Throgeirsson G. Low iron-binding capacity as a risk factor for myocardial infarction. Circulation 1994;89(1):102–8.CrossRefGoogle Scholar
  16. 16.
    Morrison HI, Semenciw RM, Mao Y, Wigle DT. Serum iron and risk of fatal acute myocardial infarction. Epidemiology 1994;5(2):243–46.CrossRefGoogle Scholar
  17. 17.
    Klipstein-Grobusch K, Foster JF, Grobbee DE, Lindemans J, Boeing H, Hofman A, et al. Serum ferritin and risk of myocardial infarction in the elderly: The Rotterdam Study. Am J Clin Nutr 1999;69:1231–36.CrossRefGoogle Scholar
  18. 18.
    Tuomainen T, Punnonen K, Nyyssonen K, Salonen, JT. Association between body iron stores and the risk of acute myocardial infarction in men. Circulation 1998;97:1461–66.CrossRefGoogle Scholar
  19. 19.
    Salonen, JT. Is there a continuing need for longitudinal epidemiologic research? The Kuopio Ischemic Heart Disease Risk Factor Study. Ann Clin Research 1988;20:46–50.Google Scholar
  20. 20.
    Klipstein-Grobusch K, Grobbee DE, den Breeijen JH, Boeing H, Hofman A, Witteman JC. Dietary iron and risk of myocardial infarction in the Rotterdam Study. Am J Epidemiol 1999;149(5):421–28.CrossRefGoogle Scholar
  21. 21.
    Nova Scotia Heart Health Program. Report of the Nova Scotia Nutrition Survey. Halifax: Nova Scotia Department of Health, 1993.Google Scholar
  22. 22.
    Monsen ER, Balintfy, JL. Calculating dietary iron bioavailability: Refinement and computerization? J Am Dietary Association 1982;80:307–11.Google Scholar
  23. 23.
    Monsen ER, Hallberg L, Layrisse M, Hegsted DM, Cook JD, Mertz W, et al. Estimation of available dietary iron. Am J Clin Nutr 1978;31:134–41.CrossRefGoogle Scholar
  24. 24.
    Cook JD, Monsen, ER. Food iron absorption in human subjects. III. Comparison of the effect of animal proteins on nonheme iron absorption? Am J Clin Nutr 1976;29:859–67.CrossRefGoogle Scholar
  25. 25.
    Kephart G, Thomas VS, MacLean DR. Socioeconomic differences in the use of physician services in Nova Scotia. Am J Public Health 1998;88(5):800–3.CrossRefGoogle Scholar
  26. 26.
    Hampl J, Betts NM, Benes, BA. The ‘age+5’ rule: Comparison of dietary fiber intake among 4- to 10-year-old children. J Am Dietetic Association 1998;98:1418–23.CrossRefGoogle Scholar
  27. 27.
    Galanis DJ, McGarvey ST, Quested C, Sio B, Afele-Faamuli S. Dietary intake of modernizing Samoans: Implications for risk of cardiovascular disease. J Am Dietetic Association 1999;99(2):184–90.CrossRefGoogle Scholar
  28. 28.
    Willett WC, Sampson L, Stampfer MJ, Rosner B, Bain C, Witschi J, et al. Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol 1985;122(1):51–65.CrossRefGoogle Scholar
  29. 29.
    Korn LK, Graubard, BI. Epidemiological studies utilizing surveys: Accounting for sampling design. Am J Public Health 1991;81:1166–73.CrossRefGoogle Scholar
  30. 30.
    Veugelers PJ, Yip AM, Kephart G. Proximal and contextual socioeconomic determinants of mortality: Multilevel approaches in a setting with universal health care coverage. Am J Epidemiol 2001;154:725–32.CrossRefGoogle Scholar
  31. 31.
    Laboratory Centre for Disease Control. Statistics Canada. Cardiovascular Disease Surveillance On-Line, 13 September 2000, <> (30 April 2001).Google Scholar
  32. 32.
    Moore R, Mao Y, Zhang J. Economic burden of illness in Canada, 1993. Executive summary and recommendations. Chron Dis Can 1997;18:95–96.Google Scholar
  33. 33.
    Veugelers PJ, Guernsey, JR. Health deficiencies in Cape Breton County, Nova Scotia, Canada, 1950–1995. Epidemiology 1999;10:495–99.CrossRefGoogle Scholar
  34. 34.
    Veugelers PJ, Kim AL, Guernsey, JR. Inequalities in health. Analytic approaches based on life expectancy and suitable for small area comparisons? J Epidemiol Community Health 2000;54:375–80.CrossRefGoogle Scholar
  35. 35.
    Fitzgerald AL, MacLean DR, Veugelers, PJ. Diet reference intakes: A comparison with the Nova Scotia Nutrition Survey. Can J Diet Pract Res (In press).Google Scholar

Copyright information

© The Canadian Public Health Association 2002

Authors and Affiliations

  • Darshaka Malaviarachchi
    • 1
  • Paul J. Veugelers
    • 1
    Email author
  • Alexandra M. Yip
    • 1
  • David R. MacLean
    • 1
  1. 1.Department of Community Health and Epidemiology, Faculty of MedicineDalhousie UniversityHalifaxCanada

Personalised recommendations