Canadian Journal of Public Health

, Volume 92, Issue 5, pp 353–358 | Cite as

Familial Resemblance of Bone Mineral Density Between Females 18 Years and Older and Their Mothers

  • Daniel Picard
  • Andrée Imbach
  • Marielle Couturier
  • Raymond Lepage
  • Michel Picard


Potential determinants of bone mass were investigated in a group of 70 young females (mean age 26.6 years), daughters of women studied in premenopause. Nutritional data, leisure physical activity level, lifestyle habits as well as familial similarities were assessed. The daughters’ bone mineral density (BMD), measured by dual-energy absorp-tiometry, was significantly correlated with their body mass index (BMI) (r = 0.22), dietary vitamin D intake (r = 0.19) and their mothers’ BMD (r = 0.44). Multiple regression analysis indicated that only the mothers’ BMD remained an independent predictor of bone mass. Mother-daughter correlations were also observed for body weight (r = 0.24), height (r = 0.39), BMI (r = 0.29), dietary calcium intake (r = 0.20), and calcium (r = 0.20) or vitamin D (r = 0.25) intakes from dairy products. Hence, these observations support the evidence that mothers’ BMD is the strongest predictor of bone mass of young women in their third decade.


Nous avons évalué les principaux déterminants de la masse osseuse chez 70 jeunes femmes (âge moyen: 26,6 ans) dont les mères avaient été étudiées avant la ménopause. Notre évaluation a porté sur les apports nutritionnels, le niveau d’activité physique durant les loisirs, le mode de vie et les antécédents familiaux. Nous avons mesuré la densité osseuse de la colonne lombaire (DO) par densitométrie biphotonique. Afin de déterminer l’influence de l’hérédité et de l’environnement, ces paramètres ont été comparés à ceux des mères. La DO des filles était en relation significative avec celle de leur mère (r = 0,44), l’indice de masse corporelle (IMC) (r = 0,22) et l’apport alimentaire en vitamine D (r = 0,19). Par régression multiple, seule la DO des mères a été associée à la DO des filles. Des corrélations mère-fille ont été observées pour le poids (r = 0,24), la taille (r = 0,39), l’IMC (r = 0,29), l’apport en calcium (r = 0,20) et les apports en calcium (r = 0,20) ou en vitamine D (r = 0,25) provenant des produits laitiers. Ces observations suggèrent que la DO de la mère est le principal déterminant de la masse osseuse chez les jeunes femmes dans la trentaine.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Melton LJ. Epidemiology of fractures. In: Riggs BL, Melton LJ (Eds.), Osteoporosis: Etiology, Diagnosis and Management, 2nd ed. Philadelphia: Lippincott-Raven, 1995;225–47.Google Scholar
  2. 2.
    Eddy D, Johnston C, Cummings S, et al. Osteoporosis: Review of the evidence for prevention, diagnosis and treatment and cost-effectiveness analysis. Osteoporos Int 1998;8(S4):S1–S88.CrossRefGoogle Scholar
  3. 3.
    Matkovic V, Jelic T, Wardlaw GM, et al. Timing of peak bone mass in Caucasian females and its implication for the prevention of osteoporosis. J Clin Invest 1994;93:799–808.CrossRefGoogle Scholar
  4. 4.
    Rodin A, Murby B, Smith MA, et al. Premenopausal loss in the lumbar spine and neck of femur: A study of 225 Caucasian women. Bone 1990;11:1–5.CrossRefGoogle Scholar
  5. 5.
    Sowers MR, Clark MK, Hollis B, et al. Radial bone density in pre- and peri-menopausal women: A prospective study of rates and risk factors for loss. J Bone Miner Res 1992;7:647–57.CrossRefGoogle Scholar
  6. 6.
    Recker RR, Davies M, Hinders S, et al. Bone gain in young adult women. JAMA 1992;268:2403–08.CrossRefGoogle Scholar
  7. 7.
    Nguyen TV, Howard PJ, Kelly PJ, et al. Bone mass, lean mass, and fat mass: Same genes or same environments? Am J Epidemiol 1998;147:3–16.CrossRefGoogle Scholar
  8. 8.
    Dequeker J, Nijs J, Verstraeten A, et al. Genetic determinants of bone mineral content of the spine and the radius: A twin study. Bone 1987;8:207–9.CrossRefGoogle Scholar
  9. 9.
    Pocock NA, Eisman JA, Hopper JL, et al. Genetic determinants of bone mass in adults: A twin study. J Clin Invest 1987;80:706–10.CrossRefGoogle Scholar
  10. 10.
    Christian JC, Wu P-L, Slemenda CW, et al. Heritability of bone mass: A longitudinal study in aging male twins. Am J Hum Genet 1989;44:429–33.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Slemenda CW, Christian JC, Williams CJ, et al. Genetics determinants of bone mass in adult women: A reevaluation of the twin model and the potential importance of gene interaction on heritability estimates. J Bone Miner Res 1991;6:561–67.CrossRefGoogle Scholar
  12. 12.
    Arden NK, Baker J, Hogg C, et al. The heritability of bone mineral density, ultrasound of the calcaneus and hip axis length: A study of post-menopausal twins. J Bone Miner Res 1996;11:530–34.CrossRefGoogle Scholar
  13. 13.
    Seeman E, Hopper JL, Bach LA, et al. Reduced bone mass in daughters of women with osteoporosis. N Engl J Med 1989;320:554–58.CrossRefGoogle Scholar
  14. 14.
    Seeman E, Tsalamandris C, Formica C, et al. Reduced femoral neck bone density in the daughters of women with hip fractures: The role of low peak bone density in the pathogenesis of osteoporosis. J Bone Miner Res 1994;9:739–43.CrossRefGoogle Scholar
  15. 15.
    Lutz J. Bone mineral, serum calcium, and dietary intakes of mother/daughter pairs. Am J Clin Nutr 1986;44:99–106.CrossRefGoogle Scholar
  16. 16.
    Tylavsky FA, Bortz A, Hancock R, et al. Familial resemblance of radial bone mass between pre-menopausal mothers and their college-age daughters. Calcif Tissue Int 1989;45:265–72.CrossRefGoogle Scholar
  17. 17.
    Lutz J, Tesar R. Mother-daughter pairs: Spinal and femoral bone densities and dietary intakes. Am J Clin Nutr 1990;52:872–77.CrossRefGoogle Scholar
  18. 18.
    Hansen MA, Hassager C, Jensen SB, et al. Is heritability a risk factor for postmenopausal osteoporosis? J Bone Miner Res 1992;7:1037–43.CrossRefGoogle Scholar
  19. 19.
    Krall EA, Dawson-Hughes B. Heritable and lifestyle determinants of bone mineral density. J Bone Miner Res 1993;8:1–9.CrossRefGoogle Scholar
  20. 20.
    Ulrich CM, Georgiou CC, Snow-Harter CM, et al. Bone mineral density in mother-daughter pairs: Relations to lifetime exercise, lifetime milk consumption, and calcium supplements. Am J Clin Nutr 1996;63:72–79.CrossRefGoogle Scholar
  21. 21.
    Kahn SA, Pace JE, Cox ML, et al. Osteoporosis and genetic influence: A three-generations study. Postgrad Med J 1994;70:798–800.CrossRefGoogle Scholar
  22. 22.
    Mckay HA, Bailey DA, Wilkinson AA, et al. Familial comparison of bone mineral density at the proximal femur and lumbar spine. Bone Miner 1994;24:95–107.CrossRefGoogle Scholar
  23. 23.
    Sowers MR, Burns TL, Wallace RB. Familial resemblance in bone mass in adult women. Genet Epidemiol 1986;3:85–93.CrossRefGoogle Scholar
  24. 24.
    Slemenda CW, Christian JC, Williams CJ, et al. Genetic determinants of bone mass in adult women: A reevaluation of the twin model and the potential importance of gene interaction on heritability estimates. J Bone Miner Res 1991;6:561–67.CrossRefGoogle Scholar
  25. 25.
    Laitinen K, Välimäki M. Alcohol and bone. Calcif Tissue Int 1991;49:S70–S73.CrossRefGoogle Scholar
  26. 26.
    Bassey EJ, Ramsdale SJ. Increase in femoral bone density in young women following high-impact exercise. Osteoporosis Int 1994;4:72–75.CrossRefGoogle Scholar
  27. 27.
    Ramsdale SJ, Bassey EJ, Pye DJ. Dietary calcium intake relates to bone mineral density in pre-menopausal women. Br J Nutr 1994;71:77–84.CrossRefGoogle Scholar
  28. 28.
    Harris SS, Dawson-Hughes B. Caffeine and bone loss in healthy postmenopausal women. Am J Clin Nutr 1994;60:573–78.CrossRefGoogle Scholar
  29. 29.
    Hopper JL, Seeman E. The bone density of female twins discorded for tobacco use. N Engl J Med 1994;330(6):387–92.CrossRefGoogle Scholar
  30. 30.
    Flicker L, Hopper JL, Rodgers L, et al. Bone density determinants in elderly women: A twin study. J Bone Miner Res 1995;10:1607–13.CrossRefGoogle Scholar
  31. 31.
    Picard D, Ste-Marie LG, Coutu D, et al. Premenopausal bone mineral content relates to height, weight and calcium intake during early adulthood. Bone Miner 1988;4:299–309.PubMedGoogle Scholar
  32. 32.
    Picard D, Imbach A, Couturier M, et al. Longitudinal study on the evolution of bone density and its determinants in women in peri or early menopause. Calcif Tissue Int 2000;67:356–60.CrossRefGoogle Scholar
  33. 33.
    Warwick E. Nutrient Analysis Program. Cornwall, P.E.I.: 1991.Google Scholar
  34. 34.
    Couturier M, Imbach A. Calcium and vitamin D intakes of women and their daughters: Distribution by food groups and meals. J Can Diet Assoc 1997;58:77–83.Google Scholar
  35. 35.
    Ainsworth BE, Haskell WL, Leon AS, et al. Compendium of physical activities: Classification of energy costs of human physical activities. Med Sci Sports Exerc 1993;25:71–80.CrossRefGoogle Scholar
  36. 36.
    D’Amour P, Gilbert F, Gascon-Barré M, et al. Late increase in serum 1,25-dihydrovitamin D one month after surgery for adenomatous hyper-parathyroidism. Clin Endocrinol 1986;24:349–58.CrossRefGoogle Scholar
  37. 37.
    D’Amour P, Labelle F, Lazure C. Comparison of four different carboxylterminal tracers in a radioimmunoassay specific to the 68–84 region of human parathyroid hormone. J Immunoassay 1984;5:183–204.CrossRefGoogle Scholar
  38. 38.
    D’Amour P, Labelle F, Wolde-Giorghis R, et al. Immunological evidences for the presence of small late carboxylterminal fragment(s) of human parathyroid hormone (PTH) in circulation in man. J Immunoassay 1989;10:191–205.CrossRefGoogle Scholar
  39. 39.
    Henderson NK, Price RI, Cole JH, et al. Bone density in young women is associated with body weight and muscle strength but not dietary intakes. J Bone Miner Res 1995;10:384–93.CrossRefGoogle Scholar
  40. 40.
    Sowers MR, Boehnke M, Jannausch ML, et al. Familiality and partitioning the variability of femoral bone mineral density in women of child-bearing age. Calcif Tissue Int 1992;50:110–14.CrossRefGoogle Scholar
  41. 41.
    Jouanny P, Guillemin F, Kuntz CJ, et al. Environmental and genetic factors affecting bone mass. Arthritis Rheumat 1995;38:61–67.CrossRefGoogle Scholar
  42. 42.
    Mailhot M, Ghadirian P, Parent M-E, et al. Patterns of calcium intake among French-Canadians living in Montreal. Can J Public Health 1994;85:351–56.PubMedGoogle Scholar
  43. 43.
    Santé Québec, Bertrand L. Les Québécoises et les Québécois mangent-ils mieux? Rapport de l’enquête québécoise sur la nutrition, 1990. Ministère de la Santé et des Services sociaux, Gouvernement du Québec: Montréal, QC, 1995.Google Scholar
  44. 44.
    Kanders B, Dempster DW, Lindsay R. Interaction of calcium nutrition and physical activity on bone mass in young women. J Bone Miner Res 1988;3:145–49.CrossRefGoogle Scholar
  45. 45.
    Fehily AM, Coles RJ, Evans WD, et al. Factors affecting bone density in young adults. Am J Clin Nutr 1992;56:579–86.CrossRefGoogle Scholar
  46. 46.
    Metz JA, Anderson JJB, Gallagher PN. Intakes of calcium, phosphorus, and protein, and physical-activity level are related to radial bone mass in young adult women. Am J Clin Nutr 1993;58:537–42.CrossRefGoogle Scholar
  47. 47.
    Riggs BL, Wahner HW, Melton LJ, et al. Dietary calcium intake and rates of bone loss in women. J Clin Invest 1987;80:979–82.CrossRefGoogle Scholar
  48. 48.
    Desai SS, Baran DT, Grimes J, et al. Relationship of diet, axial, and appendicular bone mass in normal premenopausal women. Am J Med Sci 1987;293(4):218–20.CrossRefGoogle Scholar
  49. 49.
    Mazess RB, Barden HS. Bone density in pre-menopausal women: Effects of age, dietary intake, physical activity, smoking, and birth-control pills. Am J Clin Nutr 1991;53:132–42.CrossRefGoogle Scholar
  50. 50.
    Armamento-Villareal R, Villareal DT, Avioli LV, et al. Estrogen status and heredity are major determinants of premenopausal bone mass. J Clin Invest 1992;90:2464–71.CrossRefGoogle Scholar
  51. 51.
    Nieves JW, Golden AL, Siris E, et al. Teenage and current calcium intake are related to bone mineral density of the hip and forearm in women aged 30–39 years. Am J Epidemiol 1995;141:342–51.CrossRefGoogle Scholar
  52. 52.
    Lindsay R, Cosman F, Herrington BS, et al. Bone mass and body composition in normal women. J Bone Miner Res 1992;7:55–63.CrossRefGoogle Scholar
  53. 53.
    Parsons TJ, Prentice A, Smith EA, et al. Bone mineral mass consolidation in young British adults. J Bone Miner Res 1996;11:264–74.CrossRefGoogle Scholar
  54. 54.
    Young D, Hopper JL, Nowson CA, et al. Determinants of bone mass in 10- to 26-year-old females: A twin study. J Bone Miner Res 1995;10:558–67.CrossRefGoogle Scholar
  55. 55.
    Michaëlsson K, Holmberg L, Mallmin H, et al. Diet, bone mass, and osteocalcin: A cross-sectional study. Calcif Tissue Int 1995;57:86–93.CrossRefGoogle Scholar
  56. 56.
    Whyshak G. Dietary animal fat intake, calcium intake, and bone fractures in women 50 years and older. J Women’s Health 1993;2:329–34.CrossRefGoogle Scholar

Copyright information

© The Canadian Public Health Association 2001

Authors and Affiliations

  • Daniel Picard
    • 1
  • Andrée Imbach
    • 2
  • Marielle Couturier
    • 2
  • Raymond Lepage
    • 3
  • Michel Picard
    • 1
  1. 1.Department of Nuclear Medicine, CHUM - Research CentreHôpital Saint-Luc and Université de MontréalMontrealCanada
  2. 2.Department of Physiology, Faculty of MedicineUniversité de MontréalCanada
  3. 3.Department of BiochemistryHôpital Saint-LucCanada

Personalised recommendations