Advertisement

Canadian Journal of Public Health

, Volume 102, Issue 3, pp 176–179 | Cite as

Neighbourhood Environmental Correlates of Perceived Park Proximity in Montreal

  • Spencer MooreEmail author
  • Yan Kestens
Quantitative Research
  • 1 Downloads

Abstract

Objectives

Perceived proximity to recreational settings has been shown to be associated with increased physical activity levels. We examined individual socio-demographic and environmental correlates of perceived park proximity in Montreal to assess targets for ecological interventions to improve physical activity.

Methods

A stratified clustered sampling design was used to collect data on perceived park proximity from 864 adults residing in 300 Montreal census tracts. Perceived park proximity was measured by asking participants if they perceived a park as within walking distance of their home. Objective measures of park proximity and park density were constructed using geographic information systems (GIS). Canada Census data provided information on census tract population density and median income levels. Multilevel logistic regression was used to examine the likelihood of not perceiving a park as proximate.

Results

Older adults were more likely to perceive a park as not proximate to their home (OR: 1.04; 95% CI: 1.02–1.07). Perceived park proximity varied across Montreal neighbourhoods with an interclass correlation coefficient of 16.10%. Objective distance to the closest park (OR: 1.45; 95% CI: 1.10–1.92) was associated with adults’ subjective perceptions of park proximity. Residents of neighbourhoods with higher population density (OR: 0.92; 95% CI: 0.87–0.97) and higher average income (OR: 0.45; 95% CI: 0.24–0.87) were less likely to view a park as outside walking distance to their residence.

Conclusion

Regardless of the actual distance to the park, neighbourhood environmental factors are associated with people’s perceptions of having a park within walking distance of their homes.

Key words

Spatial behavior urban health residence characteristics socioeconomic factors environment 

Résumé

Objectifs

Il est démontré que la proximité subjective de lieux récréatifs est associée à des niveaux d’activité physique accrus. Nous avons examiné les corrélats sociodémographiques et environnementaux individuels de la proximité subjective d’un parc, à Montréal, pour évaluer les cibles d’interventions écologiques visant à rehausser l’activité physique.

Méthode

À l’aide d’un protocole d’échantillonnage en grappes stratifié, nous avons recueilli des données sur la proximité subjective d’un parc auprès de 864 adultes résidant dans 300 secteurs de recensement de Montréal. Pour mesurer la proximité subjective, nous avons demandé aux participants s’il y avait un parc à distance de marche de leur domicile. Des mesures objectives de la proximité et de la densité des parcs ont été construites à l’aide de systèmes d’information géographique (SIG). Les données du Recensement du Canada ont fourni des renseignements sur la densité de population et le revenu médian dans les secteurs de recensement. Au moyen d’une analyse de régression logistique multiniveau, nous avons examiné la probabilité de ne pas percevoir un parc comme étant proche.

Résultats

Les personnes âgées étaient plus susceptibles de percevoir un parc comme n’étant pas proche de leur domicile (RC=1,04; IC de 95 %=1,02–1,07). La proximité subjective d’un parc variait d’un quartier à l’autre de Montréal, avec un coefficient de corrélation interclasse de 16,1 %. La distance objective jusqu’au parc le plus proche (RC=1,45; IC de 95 %=1,10–1,92) était associée aux perceptions subjectives de la proximité du parc chez les adultes. Les résidents des quartiers à densité de population élevée (RC=0,92; IC de 95 %=0,87–0,97) et à revenu moyen élevé (RC=0,45; IC de 95 %=0,24–0,87) étaient moins susceptibles de considérer qu’un parc n’était pas à distance de marche de leur domicile.

Conclusion

Peu importe la distance réelle du parc, les facteurs environnementaux du quartier sont associés à la perception des gens d’avoir un parc à distance de marche de leur domicile.

Mots clés

comportement spatial santé en zone urbaine caractéristiques de l’habitat facteurs socioéconomiques environnement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berrigan D, McKinnon RA. Built environment and health. Prev Med 2008;47(3):239–40.CrossRefGoogle Scholar
  2. 2.
    Corbett SJ. Public health and regulation of the built environment. N S W Public Health Bull 2008;19(11–12):212–14.CrossRefGoogle Scholar
  3. 3.
    Michael YL, Yen IH. Invited commentary: Built environment and obesity among older adults - Can neighborhood-level policy interventions make a difference. Am J Epidemiol 2009;169(4):409–12.CrossRefGoogle Scholar
  4. 4.
    Kaczynski AT, Henderson KA. Parks and recreation settings and active living: A review of associations with physical activity function and intensity. J Phys Act Health 2008;5(4):619–32.CrossRefGoogle Scholar
  5. 5.
    Orsega-Smith E, Mowen AJ, Payne L, Godbey G. The interaction of stress and park use on psycho-physiological health in older adults. J Leisure Research 2004;36(2):232–56.CrossRefGoogle Scholar
  6. 6.
    Cohen DA, McKenzie TL, Sehgal A, Williamson S, Golinelli D, Lurie N. Contribution of public parks to physical activity. Am J Public Health 2007;97(3):509–14.CrossRefGoogle Scholar
  7. 7.
    Bedimo-Rung AL, Mowen AJ, Cohen DA. The significance of parks to physical activity and public health: A conceptual model. Am J Prev Med 2005;28(2):159–68.CrossRefGoogle Scholar
  8. 8.
    Li F, Fisher KJ, Brownson RC, Bosworth M. Multilevel modeling of built environment characteristics related to neighbourhood walking activity in older adults. J Epidemiol Community Health 2005;59(7):558–64.CrossRefGoogle Scholar
  9. 9.
    Hoehner C, Ramirez L, Elliott M, Handy S, Brownson R. Perceived and objective environmental measures and physical activity among urban adults. Am J Prev Med 2005;28(2S2):105–16.CrossRefGoogle Scholar
  10. 10.
    Scott M, Evenson K, Cohen D, Cox C. Comparing perceived and objectively measured access to recreational facilities as predictors of physical activity in adolescent girls. J Urban Health 2007;84:346–58.CrossRefGoogle Scholar
  11. 11.
    Guest AM, Lee BA. How urbanites define their neighborhoods. Popul Environ 1984;71:32–56.CrossRefGoogle Scholar
  12. 12.
    Sastry N, Pebley AR, Zonta M. Neighborhood definitions and the spatial dimensions of daily life in Los Angeles. RAND Labor and Population Program Working Paper DRU-2400/8 LAFANS. Santa Monica, CA: RAND Corporation, 2002Google Scholar
  13. 13.
    Daniel M, Kestens Y. MEGAPHONE (®1046898): Montreal epidemiological and geographic analysis of population health outcomes and neighbourhood effects. Montréal, QC: Centre de recherche du Centre hospitalier de l’Université de Montréal, 2007.Google Scholar
  14. 14.
    Cooper HL, Bossak B, Tempalski B, Jarlais D, Friedman S. Geographic approaches to quantifying the risk environment: Drug-related law enforcement and access to syringe exchange programmes. Int J Drug Policy 2009;20(3):217–26.CrossRefGoogle Scholar
  15. 15.
    Gatrell AC, Bailey TC, Diggle P, Rowlingson B. Spatial point pattern analysis and its application in geographical epidemiology. Tran Inst Br Geogr 1996;21:256–74.CrossRefGoogle Scholar
  16. 16.
    Maroko AR, Maantay JA, Sohler N, Grady K, Arno P. The complexities of measuring access to parks and physical activity sites in New York City: A quantitative and qualitative approach. Int J Health Geogr 2009;8:34.CrossRefGoogle Scholar
  17. 17.
    Brundson C. Estimating probability surfaces for geographical point data: An adaptive kernel algorithm. Computers & Geosciences 1995;21(7):877–94.CrossRefGoogle Scholar
  18. 18.
    American Association for Public Opinion Research. Standard definitions: Final dispositions of case codes and outcome rates for surveys, 2008). Available at: https://doi.org/www.aapor.org/uploads/Standard_Definitions_04_08_Final.pdf (Accessed May 22, 2009).Google Scholar
  19. 19.
    Snijders T, Bosker R. Multilevel Analysis. London: Sage Publications, 1999).Google Scholar
  20. 20.
    Smith TW. Developing nonresponse standards. In: Grove RG, Dillman DA, Eltinge JL, Little RJ (Eds.). Survey Nonresponse. New York: Wiley, 2002).Google Scholar
  21. 21.
    Curtin R, Presser S, Singer E. Changes in telephone nonresponse over the past quarter century. Public Opin Q 2005;69:87–98.CrossRefGoogle Scholar
  22. 22.
    Groves R. Nonresponse rates and nonresponse bias in household surveys. Public Opin Q 2006;70:646–75.CrossRefGoogle Scholar

Copyright information

© The Canadian Public Health Association 2011

Authors and Affiliations

  1. 1.School of Kinesiology and Health StudiesQueen’s UniversityKingstonCanada
  2. 2.Centre de recherche du Centre Hospitalier de l’Université de MontréalMontréalCanada
  3. 3.Département de médecine sociale et préventiveUniversité de MontréalMontréalCanada

Personalised recommendations