Canadian Journal of Public Health

, Volume 91, Issue 6, pp 471–474 | Cite as

Eye Exposure to Optical Radiation in the Glassblowing Industry: An Investigation in Southern Ontario

  • Olanrewaju M. Oriowo
  • B. Ralph Chou
  • Anthony P. Cullen


Objective: To investigate if the levels of optical radiation hazards in glassblowing are well classified according to the hazard types defined in the Canadian Standards Association (CSA) standard for industrial eye protectors.

Methods: We carried out radiometric measurements, and questionnaire survey in 4 university glassblowing laboratories, and 3 private studios.

Results: There is exposure to low levels of UV and IR radiation in all glassblowing operations. A supra-threshold IR radiation level exists in the craft glassblowing. The use of eye protectors is based on past experience regardless of the level of ocular exposure.

Conclusions: Optical radiation hazards exist in both craft and scientific glassblowing. There seems to be an inadequate understanding about radiation types encountered by glassblowers.


Objectif: Étudier si les niveaux des radiations électromagnétiques dangereux dans l’industrie de soufflage de verre sont bien documentés et conformes aux normes actuelles de la CSA (Canadian Standards Association), afin de déterminer si les souffleurs de verres utilisent adéquatement des protecteurs oculaires.

Méthodes: Des mesures radiométriques ont été prises dans quatre laboratoires universitaires de soufflage de verre et trois studios professionnels privés.

Résultats: Il y a un niveau relativement bas de radiation ultraviolet (UV) et infrarouge (IR) dans toutes les étapes de soufflage de verre, cependant il existe un niveau d’exposition plus élevé d’infrarouge dans le soufflage de verre au milieu professionnel. L’utilisation des protecteurs oculaires est basée sur l’historique et non sur le taux d’exposition oculaire.

Conclusions: Les dangers reliés aux radiations électromagnétiques existent aux deux niveaux de l’industrie de soufflage de verre, notamment scientifique et professionnel. Les souffleurs ont une compréhension insuffisante envers l’utilisation des lunettes protectrices et les différents types de radiation


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Canadian Standards Association. CAN/CSAZ94.3-99. CSA Industrial Eye and Face Protectors. Rexdale, Ontario: CSA International, 1999.Google Scholar
  2. 2.
    Meyhöfer W. Zur aetiologie des grauen staars. Jugendliche katarakten bei glassmachern. Klin Mbl Augenheilk 1886; 24:49–67.Google Scholar
  3. 3.
    Parsons, JH. Some effects of bright light upon the eyes. JAMA 1910;55:2027–34.CrossRefGoogle Scholar
  4. 4.
    Dunn, KL. Cataract from infrared rays (glassworkers’ cataract). Arch Indust Hyg Occup Med 1950;1:166–80.Google Scholar
  5. 5.
    Keatinge GF, Pearson J, Simons JP, White, EE. Radiation cataract in industry. Arch Ind Health 1955;11:305–14.Google Scholar
  6. 6.
    Sliney DH, Wolbarsht ML (Eds.). Safety with Lasers and Other Sources. A Comprehensive Handbook. New York: Plenum Press, 1980; 3–215.Google Scholar
  7. 7.
    Lydahl E, Philipson B. Infrared radiation and cataract, II. Epidemiologic investigation of glassworkers. Acta Ophthamologica 1984;62:976–92.CrossRefGoogle Scholar
  8. 8.
    Vos JJ, van Norren D. Weighing the relative significance of three heat dissipation mechanisms to produce cataract. Lasers Light Ophthalmol 1994;6(2):107–17.Google Scholar
  9. 9.
    Oriowo OM, Chou BR, Cullen, AP. Glassblowers’ ocular health and safety: Optical radiation hazards and eye protection assessment. Ophthal Physiol Opt 1997;17(3):216–24.CrossRefGoogle Scholar
  10. 10.
    Barthelmess G, Borneff J. Über die gewebliche schädigung der augenlinse durch Wärmestrahlung. Albrecht v. Graefes Arch Ophthal 1959;160:641–52.CrossRefGoogle Scholar
  11. 11.
    Matelsky I. The non-ionizing radiations. In: Industrial Hygiene Highlights. Industrial Hygiene Foundation of America. Pittsburg, PA, 1968;1:140–78.Google Scholar
  12. 12.
    Ham WT Jr., Ruffolo JJ Jr., Mueller HA, et al. Histologic analysis of photochemical lesions produced in rhesus retina by short-wavelength light. Invest Ophthal Vis Sci 1978;17:1029–35.PubMedGoogle Scholar
  13. 13.
    Statistics Canada, Occupation Division. Industry, Science and Technology Canada. 1991 Census of Canada. Ottawa: Catalogue No 93-327, 1993.Google Scholar
  14. 14.
    American Conference of Governmental Industrial Hygienists. Threshold Limit Values for Chemical Substances and Physical Agents. Biological Exposure Indices. Cincinnati, OH: ACGIH, 1999.Google Scholar
  15. 15.
    American National Standards Institute. Practice for occupational and educational eye and face protection. New York, NY: ANSI Z87.1-1989, 1989.Google Scholar
  16. 16.
    Pitts DG, Cullen AP, Hacker, PD. Ocular effects of ultraviolet radiation from 295 to 365 nm. Invest Ophthal Vis Sci 1977;16:932–39.PubMedGoogle Scholar
  17. 17.
    Pitts DG, Cullen, AP. Determination of infrared levels for ocular cataractogenesis. Graefes Arch Klin Ophthamol 1981;217:285–97.CrossRefGoogle Scholar
  18. 18.
    Bachem A. Ophthalmic ultraviolet action spectra. Am J Ophthal 1956;41:969–75.CrossRefGoogle Scholar
  19. 19.
    Pitts, DG. Ocular protection against optical radiation hazards. In: Pitts DG, Kleinstein RN (Eds.), Environmental Vision. Interactions of the Eye, Vision, and the Environment. Boston: Butterworth-Heinemann, 1993.Google Scholar

Copyright information

© The Canadian Public Health Association 2000

Authors and Affiliations

  • Olanrewaju M. Oriowo
    • 1
  • B. Ralph Chou
    • 1
  • Anthony P. Cullen
    • 1
  1. 1.Optical Radiation Laboratory, School of OptometryUniversity of WaterlooWaterlooCanada

Personalised recommendations