Advertisement

Canadian Journal of Public Health

, Volume 88, Issue 4, pp 277–279 | Cite as

Responding to Reported Clusters of Common Diseases: The Case of Multiple Sclerosis

  • Luanne M. Metz
  • Sandra McGuinness
Article

Abstract

Reports of disease clustering are becoming ever more common, and there is increasing pressure on public health agencies to respond rapidly and appropriately to these reports. We investigated a cluster of five cases of MS occurring in a small multidisciplinary hospital department. Data were collected by a variety of methods, including measurement and description of the workplace, completion of survey instruments by department staff, and construction of case histories of persons with MS. The results indicated that the department comprised a high-risk population and that only one case of MS could have any possible etiologic significance. Investigators should consider a number of factors when evaluating disease clusters, including the accuracy of diagnosis, the induction period and cause of the disease, and possible biases in the population at risk. Additionally, boundaries should not encircle the cases that led to identification of the cluster and should reflect environmental significance.

Abrégé

Les rapports sur les agrégats de cas sont de plus en plus courants, et de plus en plus de pressions s’exercent sur les services de santé publique pour qu’ils répondent rapidement et comme il faut à ces rapports. Nous avons étudié un agrégat de cinq cas de sclérose en plaques survenus dans un petit service hospitalier, pluridisciplinaire. Les données ont été recueillies à l’aide de diverses méthodes, notamment la mesure et la description du lieu de travail, les réponses du personnel à des questionnaires et les dossiers d’observation médicale des personnes atteintes par la sclérose en plaques. Les résultats ont révélé que le service comprenait une population à risque élevé et qu’un seul cas pourrait avoir n’importe quelle explication causale. Les enquêteurs devraient prendre en considération un ensemble de facteurs lorsqu’ils évaluent des agrégats de cas, notamment l’exactitude du diagnostic, la période d’induction et la cause de la maladie, ainsi que les biais possibles dans la population à risque. En outre, il ne faut pas se circonscrire aux cas qui ont permis l’identification de l’agrégat mais prendre en compte l’ensemble de l’environnement.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Taylor D, Wilkie D. Drawing the line with leukaemia. New Scientist 1988; 21 July 53-6.Google Scholar
  2. 2.
    Enterline PE. Evaluating cancer clusters. J Am Ind Hyg Ass 1985;46;B10–B13.CrossRefGoogle Scholar
  3. 3.
    Sheremeta WA, Poskanzer DC, Withum DG, MacLeod CL, Whiteside ME. Unusual occurrence on a tropical island of multiple sclerosis. Lancet 1985;8455; 618.CrossRefGoogle Scholar
  4. 4.
    Dean G, McDougall EI, Elian M. Multiple sclerosis in research workers studying swayback in lambs: An updated report. J Neuro, Neurosurg Psychiatry 1985;48; 859–65.CrossRefGoogle Scholar
  5. 5.
    Stein EC, Schiffer RB, Hall WJ, Young N. Multiple sclerosis and the workplace: Report of an industry-based cluster. Neurology 1987;37;1672–77.CrossRefGoogle Scholar
  6. 6.
    Ingalls TH. Clustering of multiple sclerosis in Galion, Ohio, 1982–1985. Am J Forensic Med Pathol 1989;10;213–15.CrossRefGoogle Scholar
  7. 7.
    Schulte PA, Ehrenberg RL, Singal M. Investigation of occupational cancer clusters: Theory and practice. Amer J Pub Health 1987;77;53–5.CrossRefGoogle Scholar
  8. 8.
    Fiore BJ, Hanrahan LP, Anderson HA. Public health response to reports of clusters. Am J Epidemiol 1990;132; S14–S22.CrossRefGoogle Scholar
  9. 9.
    Bender AP, Williams AN, Johnson RA, Jagger HG. Appropriate public health responses to clusters: The art of being responsibly responsive. Am J Epidemiol 1990;132;S48–52.CrossRefGoogle Scholar
  10. 10.
    Compston A. The epidemiology of multiple sclerosis: Principles, achievements and recommendations. Ann Neurol 1994;36;S211–S217.CrossRefGoogle Scholar
  11. 11.
    Kurtzke JF. Epidemiologic evidence for multiple sclerosis as an infection. Clin Microbiol Rev 1993;6;382–427.CrossRefGoogle Scholar
  12. 12.
    Page WF, Kurtzke JF, Murphy FM, Norman JE. Epidemiology of multiple sclerosis in US veterans: V. Ancestry and the risk of multiple sclerosis. Ann Neurol 1993;33;632–39.CrossRefGoogle Scholar
  13. 13.
    Sadovnick AD, Ebers GC. Epidemiology of multiple sclerosis: A critical overview. Can J Neurol Sci 1993;20,17–29.CrossRefGoogle Scholar
  14. 14.
    Weinshenker BG, et al. The natural history of multiple sclerosis: A geographically based study. Brain 1989;112;133–46.CrossRefGoogle Scholar
  15. 15.
    Kurtzke JF, Hyllested K. Multiple sclerosis in the Faroe Islands: 1. Clinical and epidemiological features. Ann Neurol 1979;5; 6–21.CrossRefGoogle Scholar
  16. 16.
    Poskanzer DC, Walker AM, Prenney LB, Sheridan JL. The etiology of multiple sclerosis: Temporal-spatial clustering indicating two environmental exposures before onset. Neurology 1982;31;708–13.CrossRefGoogle Scholar
  17. 17.
    Poser CM, et al. New diagnostic criteria for multiple sclerosis: Guidelines for research protocols. Ann Neurol 1983;13;227–31.CrossRefGoogle Scholar
  18. 18.
    Centers for Disease Control. Guidelines for investigating clusters of health events. MMWR 1990;39;RR1–RR11.Google Scholar
  19. 19.
    Hoffman RE, Zack MM, Davis LE, Burchfiel CM. Increased incidence and prevalence of multiple sclerosis in Los Alamos County, New Mexico. Neurology 1981;31;1489–92.CrossRefGoogle Scholar
  20. 20.
    Conomy JP, et al. Multiple sclerosis in Galion, Ohio: A cluster in time or a cluster in space? Neurology 1989;39;284.CrossRefGoogle Scholar
  21. 21.
    Kreiger N, Reynolds D. An investigation of two apparent cancer clusters in one community. Can J Public Health 1992;83;116–19.PubMedGoogle Scholar
  22. 22.
    Rothman KJ. A sobering start for the cluster busters’ conference. Am J Epidemiol 1990;132;S6–S13.CrossRefGoogle Scholar
  23. 23.
    Ebers GC, et al. A genetic basis for familial aggregation in multiple sclerosis. Nature 1995;377;103–4.CrossRefGoogle Scholar
  24. 24.
    Hibberd PL. Use and misuse of statistics for epi-demiologic studies of multiple sclerosis. Ann Neurol 1994;36;S218–S230.CrossRefGoogle Scholar
  25. 25.
    Klein GM, Rose MS, Seland TP. A prevalence study of multiple sclerosis in the Crowsnest Pass region of Southern Alberta. Can J Neurol Sci 1994;21;262–65.CrossRefGoogle Scholar
  26. 26.
    Svenson LW, Woodhead SE, Platt GH. Regional variations in the prevalence rates of multiple sclerosis in the Province of Alberta, Canada. Neuroepidemiology 1994;13;8–13.CrossRefGoogle Scholar
  27. 27.
    Helmick CG, et al. Multiple sclerosis in Key West, Florida. Am J Epidemiol 1989;130;935–38.CrossRefGoogle Scholar
  28. 28.
    Hader WJ, Irvine DG, Schiefer B. A cluster-focus of multiple sclerosis at Henribourg, Saskatchewan. Can J Neurol Sci 1990;17;391–94.CrossRefGoogle Scholar
  29. 29.
    Eastman R, Sheridan JL, Poskanzer DC. Multiple sclerosis clustering in a small Massachusetts community with possible common exposure 23 years before onset. Med Intell 1973;289;793–94.Google Scholar
  30. 30.
    Stein EC, Schiffer RB, Hall WJ, Young N. Multiple sclerosis and the workplace: Report of an industry-based cluster. Neurology 1987;37;1672–77.CrossRefGoogle Scholar
  31. 31.
    Murray TJ. An unusual occurrence of multiple sclerosis in a small rural community. Can J Neurol Sci 1976;3;163–66.CrossRefGoogle Scholar

Copyright information

© The Canadian Public Health Association 1997

Authors and Affiliations

  • Luanne M. Metz
    • 1
  • Sandra McGuinness
    • 2
  1. 1.University of Calgary Multiple Sclerosis ClinicCalgary General HospitalCanada
  2. 2.Clinic Room AC137A, SSBFoothills HospitalCalgaryCanada

Personalised recommendations