Canadian Journal of Public Health

, Volume 88, Issue 4, pp 255–265 | Cite as

Mathematical Models of Disease Transmission: A Precious Tool for the Study of Sexually Transmitted Diseases

  • Marie-Claude BoilyEmail author
  • Benoît Mâsse


This paper is an introduction to the mathematical epidemiology of sexually transmitted diseases (STDs) and its application to public health. After a brief introduction to transmission dynamics models, the construction of a deterministic compartmental mathematical model of HIV transmission in a population is described. As a background to STD transmission dynamics, basic reproductive rate, inter-group mixing, rate of partner change, and duration of infectivity are discussed. Use of the models illustrates the effect of sexual mixing (proportionate to highly assortative), of preventive intervention campaigns, and of HIV-chlamydia interaction on HIV prevalence in the different population groups. In particular, planned prevention campaigns can benefit the targeted intervention group but surprisingly can be disadvantageous for the general population. Through examples, mathematical models are shown to be helpful in our understanding of disease transmission, in interpretation of observed trends, in planning of prevention strategies, and in guiding data collection.


Cet article est une introduction à l’épidémi-ologie mathématique des maladies transmises sexuellement (MTS) et de ses applications à la santé publique. Les modèles de dynamique de transmission des MTS sont d’abord introduits de façon concise. À la section méthode, l’élaboration d’un modèle déterministe comparti-mental de transmission du VIH dans une population est illustrée. Certains concepts de base des modèles dynamiques tels le taux de reproduction de base, l’interaction intra groupes, le taux de changement de partenaires sexuels et la durée d’infectiosité sont discutés. L’impact des interactions sexuelles entre individus, des mesures préventives visant à modifier les comportements sexuels et de l’interaction entre les MTS classiques et le VIH est illustré. Plus particulièrement, il est démontré que les campagnes de prévention peuvent bénéficier au groupe directement ciblé par la campagne au détriment de la population générale. En résumé, cet article illustre, à l’aide d’exemples, l’utilité des modèles mathématiques permettant d’améliorer notre compréhension de la dynamique de transmission des MTS, notre interprétation des tendances temporelles observées et notre évaluation des stratégies de prévention; ceci permettant également de mieux cibler les données les plus utiles à recueillir lors d’études futures.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson RM, May RM. Infectious Diseases of Humans: Dynamics and Control. Oxford: Oxford University Press, 1991:757.Google Scholar
  2. 2.
    May RM. Stability and Complexity in Models Ecosystem. New-Jersey: Princeton University Press, second edition, 1973:265.Google Scholar
  3. 3.
    Anderson RM. Populations and infectious diseases: Ecology or epidemiology? J Animal Ecol 1991, 60:1–50.CrossRefGoogle Scholar
  4. 4.
    Kingman JFC. Mathematics of genetic diversity. CBMS-NFS regional conference series in applied mathematics. SIAM 1980;34:70.Google Scholar
  5. 5.
    Nokes DJ, Anderson RM. The use of mathematical models in the epidemiological study of infectious diseases and in the design of mass immunization programmes. Epidem Inf 1988;101:1–20.CrossRefGoogle Scholar
  6. 6.
    Struchiner CJ, Halloran ME, Robins JM, Spielman A. The behaviour of common measures of association used to assess a vaccination programme under complex disease transmission patterns — a computer simulation study of malaria vaccines. Int J Epidemiol 1990;19:187–96.PubMedCrossRefGoogle Scholar
  7. 7.
    Boily M-C, Brunham RC. The impact of HIV and other STDs on human populations. Are predictions possible? Inf Dis Clinics of North America 1993;7(4):771–91.Google Scholar
  8. 8.
    Anderson RM, Medley GF, May RM, Johnson AM. A preliminary study of the transmission dynamics of the human immunodeficiency virus (HIV), the causative agent of AIDS. IMA J Math Appl Med Biol 1986;3:229–63.PubMedCrossRefGoogle Scholar
  9. 9.
    Anderson RM. The transmission dynamics of sexually transmitted diseases: The behavioural components. In Wasserheit J. et al (eds): Research Issues in Human and Sexually Transmitted Diseases in the AIDS Era. Washington, American Society for Microbiology, 1991:38–60.Google Scholar
  10. 10.
    Bailey NTJ. The Mathematical Theory of Infectious Diseases and its Applications. New-York: Hafner Press, 1975:275.Google Scholar
  11. 11.
    Tan WY, Hsu H. Some stochastic models of AIDS spread. Statistics in Medicine 1989;8:121–36.PubMedCrossRefGoogle Scholar
  12. 12.
    Ross SM. Introduction to Probability Models. London: Academic Press, 1980:376.Google Scholar
  13. 13.
    Pielou EC. An Introduction to Mathematical Ecology. New-York: John Wiley and Sons, 1969.Google Scholar
  14. 14.
    Boily M-C, Anderson RM. Human immunodeficiency virus transmission and the role of other sexually transmitted diseases: Measures of association and study design. Sex Trans Dis 1994;23(4):1–21.Google Scholar
  15. 15.
    Garnett GP, Anderson RM. Factors controlling the spread of HIV in heterosexual communities in developing countries: Patterns of mixing between different age and sexual activity classes. Phil Trans R Soc Lond B 1993;342:137–59.CrossRefGoogle Scholar
  16. 16.
    Brookmeyer R, Gail MH. Risk factors for infection and the probability of HIV transmission. In: AIDS Epidemiology — A Quantitative Approach. New York: Oxford University Press, 1994:19–50.Google Scholar
  17. 17.
    Mastro TD, Satten GA, Nopkesorn T, et al. Probability of female-to-male transmission of HIV-1 in Thailand. Lancet 1994;343:204–7.PubMedCrossRefGoogle Scholar
  18. 18.
    De Vincenzi I for the European Study Group on Heterosexual Transmission of HIV. A longitudinal study of human immunodeficiency virus transmission by heterosexual partners. N Engl J Med 1994;331:341–46.CrossRefGoogle Scholar
  19. 19.
    European Study Group on heterosexual transmission of HIV. Comparison of female to male and male to female transmission of HIV in 563 stable couples. Br Med J 1992;304:809–13.CrossRefGoogle Scholar
  20. 20.
    Jewell NP, Shiboski SC. Statistical analysis of HIV infectivity based on partner studies. Biometrics 1990;46:1133–50.PubMedCrossRefGoogle Scholar
  21. 21.
    Pedersen C, Neilsen CM, Vestergaard BF, Gerstoft J, Krogsgaard K, Nielsen JO. Temporal relation of antigenaemia and loss of antibodies to core antigens to development of clinical disease in HIV infectionies in applied mathematics. SIAM 1983;45:70.Google Scholar
  22. 23.
    Hoppensteadt FC. Mathematical Methods of Population Biology. New-York: Cambridge University Press, 1982:149.CrossRefGoogle Scholar
  23. 24.
    Renshaw E. Modelling Biological Populations in Space and Time. New-York: Cambridge University Press, 1991:402.CrossRefGoogle Scholar
  24. 25.
    Hethcote HW, Yorke JA. Gonorrhoea transmission dynamics and control. In: Levin S (ed), Lecture Notes in Biomathematics. New York: Springer-Verlag, 1984:56:99.Google Scholar
  25. 26.
    Schechter MT, Le N, Craib KJP, et al. Use of Markov models to estimate the waiting times in a modified WHO staging system for HIV infection. J AIDS and Human Retrovirology 1995;8:474–79.Google Scholar
  26. 27.
    Hendriks JCM, Medley GF, van Griensven GJP, Coutinho RA, et al. The treatment free incubation period of AIDS in a cohort of homosexual men. AIDS 1993;7:231–40.PubMedCrossRefGoogle Scholar
  27. 28.
    Farewell VT, Coates RA, Fanning MM, Macfadden DK, et al. The probability of progression to AIDS in a cohort of male sexual contacts of men with HIV disease. Int J Epidemiol 1992;21:131–35.PubMedCrossRefGoogle Scholar
  28. 29.
    Taylor JJG, Munoz A, Bass SM, et al. Estimating the distribution of times from HIV seroconver-sion to AIDS using multiple imputation. J Acquired Immune Deficiency Syndromes 1990;4:69–75.Google Scholar
  29. 30.
    Bachetti P. Estimating the incubation period of AIDS by comparing population infection and diagnosis patterns. J Am Statist Ass 1990;412:1002–8.CrossRefGoogle Scholar
  30. 31.
    Longini IM Jr, Clark WS, Gardner LI, Brundage J. The dynamics of CD4+ T-lymphocyte decline in HIV infected individuals: A Markov modeling approach. Statistics in Medicine 1989; 4:1141–47.Google Scholar
  31. 32.
    Lui K-J, Darrow WW, Rutherford GW. A model-based estimate of the mean incubation period for AIDS in homosexual men. Science 1988;240:1333–35.PubMedCrossRefGoogle Scholar
  32. 33.
    Anzala, Wambugu P. Plummer FA. Incubation time to symptomatic disease and AIDS in women with known duration of infection. VII International Conference on AIDS, Florence 1991; Abstract TUC103.Google Scholar
  33. 34.
    Heesterbeek JAP, Diekmann O, Metz JAJ. On the definition and the computation of the basic reproduction ratio Ro in models for infectious diseases in heterogeneous populations. J Math Biol 1990;28:365–82.PubMedGoogle Scholar
  34. 35.
    Heesterbeek JAP, Diekmann O, Dietz K. The basic reproduction ratio for sexually transmitted diseases, 1: Theoretical considerations. Math Biosc 1991;107:325–39.CrossRefGoogle Scholar
  35. 36.
    Anderson RM. Discussion: The Kermack McKendrick epidemic threshold theorem. Bull Mathematical Biology 1991;53(1/2):3–32.CrossRefGoogle Scholar
  36. 37.
    Anderson RM, May RM. The invasion, persistence and spread of infectious diseases within animal and plants communities. Philos Trans R Soc Lond 1986;B314:533–70.CrossRefGoogle Scholar
  37. 38.
    Leigh BC, Temple MT, Trocki KF. The sexual behavior of US adults: results from a national survey. Am J Public Health 1993;83(10):1400–8.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 39.
    Anderson JE, Dahlberg LL. High-risk sexual behavior in the general population. Results from a national survey, 1988–1990. Sex Trans Dis 1992;19(6):320–25.CrossRefGoogle Scholar
  39. 40.
    Johnson AM, Wadsworth J, Wellings K, et al. Sexual lifestyles and HIV risk. Nature 1992;360:410–12.PubMedCrossRefGoogle Scholar
  40. 41.
    ACSF investigators. AIDS and sexual behaviour in France. Nature 1992;360:407–9.CrossRefGoogle Scholar
  41. 42.
    Konings E, Anderson RM, Morley D, O’Riordan T, Meegan M. Rates of sexual partner change among two pastoralist southern Nilotic groups in East Africa. AIDS (letter) 1989;3(4):245–46.PubMedGoogle Scholar
  42. 43.
    Kingman JFC. Mathematics of Genetic Diversity. Oxford: University of Oxford, 1980.CrossRefGoogle Scholar
  43. 44.
    May RM, Anderson RM. Spatial heterogeneity and the design of immunisation programmes. Math Biosci 1984;72:83–111.CrossRefGoogle Scholar
  44. 45.
    Brunham RC, Plummer AA. A general model of sexually transmitted disease epidemiology and its implications for control. Sex Trans Dis 1990;74(6):1339–52.Google Scholar
  45. 46.
    Garnett GP, Anderson RM. Contact tracing and the estimation of sexual mixing patterns: The epidemiology of gonococcal infection. Sex Trans Dis 1993;20(4):181–91.CrossRefGoogle Scholar
  46. 47.
    May RM, Anderson RM. The transmission dynamics of human immunodeficiency virus (HIV). Phil Trans R Soc Lond B 1988; 321:565–607.CrossRefGoogle Scholar
  47. 48.
    Blower SM, McLean AR. Mixing ecology and epidemiology. Proc R Soc Lond B 1991;245:187–92.CrossRefGoogle Scholar
  48. 49.
    Koopman J, Simon C, Jacques J, et al. Sexual partner selectiveness effects on homosexual HIV transmission dynamics. J AIDS 1988;1:486–504.Google Scholar
  49. 50.
    Jacquez JA, Simon CP, Koopman J. Structured mixing:Heterogeneous mixing by definition of activity groups, Biomathematics 1989;83:301–15.CrossRefGoogle Scholar
  50. 51.
    Anderson RM, Ng TW, Boily MC, May RM. The influence of different sexual-contact patterns between age classes on the predicted demographic impact of AIDS in developing countries. Ann New York Acad Sci 1989;569:240–74.CrossRefGoogle Scholar
  51. 52.
    Haralosottir S, Gupta S, Anderson RM. Preliminary studies of sexual networks in a male homosexual community in Iceland. J AIDS 1992;5:374–81.Google Scholar
  52. 53.
    Service SK, Blower SM. HIV transmission in sexual networks: an empirical analysis. Proc R Soc Lond B 1995;260:237–44.CrossRefGoogle Scholar
  53. 54.
    Renton A, Whitaker L, Ison C, Wadsworth J, Hanes JR. Estimating the sexual mixing patterns in the general population from those in people acquiring gonorrhoea infection: Theoretical foundation and empirical findings. J Epidemiology and Community Health 1995;:205–13.CrossRefGoogle Scholar
  54. 55.
    Gupta S, Anderson RM, May RM. Networks of sexual contacts: Implications for the pattern of spread of HIV. AIDS 1989;3:807–17.PubMedCrossRefGoogle Scholar
  55. 56.
    Boily M-C, Anderson RM. Sexual contact patterns between men and women and the spread of HIV-1 in urban centres in Africa, IMA J Math App Med Biol 1991;8:221–47.CrossRefGoogle Scholar
  56. 57.
    Boily M-C, Desai KN, Garnett GP. The impact of chlamydia infection on HIV transmission in the heterosexual population of the United-States. IMA J Math App Med Biol 1997 (accepted).Google Scholar
  57. 58.
    Garnett GP, Swinton J, Brunham C, Anderson RM. Gonococcal infection, infertility, and population growth: The influence of heterogeneity in sexual behaviour. IMA J Math App Med Biol 1992;9:127–44.CrossRefGoogle Scholar
  58. 59.
    Whitaker L, Renton AM. A theoretical problem of interpreting the recently reported increase in homosexual gonorrhoea. Eur J Epidemiol 1992;8(2):187–91.PubMedCrossRefGoogle Scholar
  59. 60.
    Potterat J. The role of social networks in STD transmission and the implications for prevention. Institute of Medicine workshop: Understanding the relationship of STD control to HIV prevention in the United States. Committee on Prevention and Control of Sexually Transmitted Diseases, National Academy of Sciences, Washington, D.C., 10 July, 1995.Google Scholar
  60. 61.
    Thompson Fullilove M. Risk behaviors and STD/HIV transmission. Institute of Medicine workshop: Understanding the relationship of STD control to HIV prevention in the United States. Committee on Prevention and Control of Sexually Transmitted Diseases, National Academy of Sciences, Washington, D.C., July 10, 1995.Google Scholar
  61. 62.
    Boily M-C, Anderson RM. Assessing change in sexual behaviour using mathematical models: the impact of sexual mixing (Part A). International Conference: Assessing AIDS Prevention, Montreux, October 29- November 1, 1990 (Abstract C2.4).Google Scholar
  62. 63.
    Anderson RM, May RM, Boily M-C, et al. The spread of HIV-1 in Africa: sexual contact patterns and the predicted demographic impact of AIDS. Nature 1991;352:581–87.PubMedCrossRefGoogle Scholar
  63. 64.
    May RM, Anderson RM. Heterogeneities, cofac-tors and other aspects of the transmission dynamics of HIV/AIDS. AIDS Journal 1989;2:33–67.Google Scholar
  64. 65.
    Kault DA. Modelling the effects of AIDS on gonorrhea epidemiology. Mathl Comput Modelling 1992;16(11):3–14.CrossRefGoogle Scholar
  65. 66.
    Blower SM, Van Griensven GJP. Effect of differential mortality on risk behavior change in cohort studies. J Acquired Immune Deficiency Syndromes 1993;6(12):1364–67.Google Scholar
  66. 67.
    Evans BG, Catchpole MA, Heptonstall J, et al. Sexually transmitted diseases and HIV-1 infection among homosexual men in England and Wales. BMJ 1993;306:426–28.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 68.
    Van de Laar MJW, Pickering J, van den Hoek JAR, van Griensven GJP, et al. Declining gonorrhoea rates in The Netherlands, 1976-88: consequences for the AIDS epidemic. Genitourin Med 1990;66:148–55.PubMedPubMedCentralGoogle Scholar
  68. 69.
    Handsfield HH, Krekeler B, Nicola RM. Trends in gonorrhoea in homosexually active men, King county, Washington. MMWR 1989;38:762–64.Google Scholar
  69. 70.
    Forsyth JRL, Sherrand J, Traynor P. Resurgent gonorrhoea in homosexual men. Lancet 1990;336:878.PubMedCrossRefGoogle Scholar
  70. 71.
    Aral SO. Heterosexual transmission of HIV: The role of other sexually transmitted infections and behaviour in its epidemiological prevention and control. Rev Publ Health 1993;14:451–67.CrossRefGoogle Scholar
  71. 72.
    Wald A, Corey L, Handsfield HH, Holmes KK. Influence of HIV infection on manifestations and natural history of other sexually transmitted diseases. Annu Rev Publ Health 1993;14:19–42.CrossRefGoogle Scholar
  72. 73.
    Wasserheit JN. Interrelationships between immunodeficiency virus infection and other sexually transmitted diseases. Sex Trans Dis 1992;19(2):61–65.CrossRefGoogle Scholar
  73. 74.
    Laga M, Nzilambi N, Goeman J. The interrelationships of sexually transmitted diseases and HIV infection: implication for the control of both epidemics in Africa. AIDS 1991;5(suppl1):S55–S65.PubMedGoogle Scholar
  74. 75.
    Laga M, Diallo MO, Buv A. Inter-relationship of sexually transmitted diseases and HIV: Where are we now? AIDS 1994;8(suppl1):S119–S124.Google Scholar
  75. 76.
    Grosskurth H, Mosha F, Todd J, et al. Impact of improved treatement of sexually transmitted diseases on HIV infection in rural Tanzania: randomised controlled trial. Lancet 1995;346:530–36.PubMedCrossRefGoogle Scholar
  76. 77.
    Kaplan EH, Brandeau ML (editors). Modeling the AIDS Epidemic. Planning, Policy, and Prediction. New York: Raven Press, 1994.Google Scholar
  77. 78.
    Isham V, Medley G. Models for Infectious Human Diseases: Their Structure and Relation to Data. New York: Cambridge University Press, 1996.CrossRefGoogle Scholar
  78. 79.
    Grenfell B, Dobson A. Ecology of Infectious Diseases in Natural Populations. New York: Cambridge University Press, 1995CrossRefGoogle Scholar
  79. 80.
    Murray JD. Mathematical Biology. New York: Springer-Verlag, 1993.CrossRefGoogle Scholar
  80. 81.
    Jager JC, Ruitenberg EJ (editors). Statistical Analysis and Mathematical Modelling of AIDS. Oxford: Oxford University Press, 1988.Google Scholar
  81. 82.
    Halloran ME, Struchiner CJ. Study designs for dependent happenings. Epidemiology 1991;2(5):331–38.PubMedCrossRefGoogle Scholar
  82. 83.
    Halloran ME, Haber M, Longini IM, Struchiner CJ. Direct and indirect effects in vaccine efficacy and effectiveness. Am J Epidemiol 1991;4:323–31.CrossRefGoogle Scholar
  83. 84.
    Dufour A, Boily M-C, Alary M. The impact of different STD treatment schedules on HIV infection in sub-saharan Africa. XIth International Conference on AIDS, Vancouver, Canada, July 7–12, 1996.Google Scholar
  84. 85.
    Somsé P, Chapko MK, Hawkins RV. Multiple sexual partners: Results of a national HIV/AIDS survey in the Central African Republic. AIDS 1993;7(4):579–83.CrossRefGoogle Scholar
  85. 86.
    Garnett GP, Hughes JP, Anderson RM, et al. Sexual mixing pattern of patients attending sexually transmitted disease clinics. Sex Trans Dis 1996;23: 248–57.CrossRefGoogle Scholar

Copyright information

© The Canadian Public Health Association 1997

Authors and Affiliations

  1. 1.Centre de Recherche, Hôpital du St-SacrementGroupe de Recherche en ÉpidémiologieQuébecCanada
  2. 2.Département de Médecine Sociale et PréventiveUniversité LavalCanada

Personalised recommendations