Aerotecnica Missili & Spazio

, Volume 96, Issue 3, pp 154–164 | Cite as

Aeroelastic Stability Estimation of Control Surfaces with Freeplay Nonlinearity

  • A. Tamer
  • P. Masarati


This work discusses the quantitative stability evaluation of aeroelastic problems with freeplay in the control surfaces. Stability estimation of linear time invariant and linear time periodic systems rely on eigenanalysis of state transition matrices and implies simplifications on the problems governed by nonlinear non-autonomous equations. Lyapunov Characteristic Exponents directly provide quantitative information on the stability of nonlinear non-autonomous dynamical systems. Stability estimation using Lyapunov Characteristic Exponents does not require a special reference solution and is consistent with the eigensolution of linear time invariant and Floquet-Lyapunov analysis of linear time periodic systems. Thus, they represent a natural generalization of conventional stability analysis. The Discrete QR method is used to practically estimate the Lyapunov Characteristic Exponents. The method is applied to a three-dimensional aeroelastic problem with freeplay introduced to the control surface.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Raymond L. Bisplinghoff, Holt Ashley, and Robert L. Halfman. Aeroelasticity. Dover, New York, 1996.zbMATHGoogle Scholar
  2. 2.
    Xiang Jinwu, Yan Yongju, and Li Daochun. Recent advance in nonlinear aeroelastic analysis and control of the aircraft. Chinese Journal of Aeronautics, 27(1):12–22, 2014. doi:10.1016/j.cja.2013.12.009.CrossRefGoogle Scholar
  3. 3.
    Steven H. Strogatz. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Perseus Books, Reading, Massachusetts, 1994.zbMATHGoogle Scholar
  4. 4.
    Earl Dowell, John Edwards, and Thomas Strganac. Nonlinear aeroelasticity. Journal of Aircraft, 40(5):857–874, 2003.CrossRefGoogle Scholar
  5. 5.
    B.H.K. Lee, S.J. Price, and Y.S. Wong, Nonlinear aeroelastic analysis of airfoils: bifurcation and chaos. Progress in Aerospace Sciences, 27:205–334, 1999. doi:10.1016/j.paerosci.2009.08.002.CrossRefGoogle Scholar
  6. 6.
    Jan R. Wright and Jonathan E. Cooper. Introduction to Aircraft Aeroelasticity and Loads. John Wiley & Sons, 2007.CrossRefGoogle Scholar
  7. 7.
    J.E. Shigley and C.R. Mischke. Standard Handbook of Machine Design. McGraw-Hill, 2 edition, 1996.Google Scholar
  8. 8.
    Dan B. Marghitu, editor. Mechanical Engineer’s Handbook. Academic Press, 2001.Google Scholar
  9. 9.
    D. Eller. Friction, freeplay and flutter of manually controlled aircraft. In International Forum on Aeroelasticity and Structural Dynamics, Stockholm, Sweden, June 2007.Google Scholar
  10. 10.
    L. Ya. Adrianova. Introduction to Linear Systems of Differential Equations, volume 146 of Translations of Mathematical Monographs. American Mathematical Society, Providence, Rhode Island, 1995.CrossRefGoogle Scholar
  11. 11.
    Giancarlo Benettin, Luigi Galgani, Antonio Giorgilli, and Jean-Marie Strelcyn. Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica, 15(1):9–20, March 1980. doi:10.1007/BF02128236.CrossRefGoogle Scholar
  12. 12.
    Luca Dieci and Erik S. Van Vleck. Lyapunov and other spectra: a survey. In Donald Estep and Simon Taverner, editors, Collected lectures on the preservation of stability under discretization, chapter 11, pages 197–218. SIAM, Philadelphia, PA (USA), 2002.Google Scholar
  13. 13.
    Alan Wolf, Jack B. Swift, Harry L. Swinney, and John A. Vastano. Determining Lyapunov exponents from a time series. Physica D: Nonlinear Phenomena, 16(3):285–317, July 1985. doi:10.1016/0167-2789(85)90011-9.MathSciNetCrossRefGoogle Scholar
  14. 14.
    S. J. Price, H. Ali Ghanbari, and B. H. K. Lee. The aeroelastic response of a two dimensional airfoil with bilinear and cubic structural nonlinearities. Journal of Fluids and Structures, 9:175–193, September 1995.CrossRefGoogle Scholar
  15. 15.
    H. Dai, X. Yue, D. Xie, and S. N. Atluri. Chaos and chaotic transients in an aeroelastic system. Journal of Sound and Vibration, 333:7267–7285, December 2014. doi:10.1016/j.jsv.2014.08.034.CrossRefGoogle Scholar
  16. 16.
    Piergiovanni Marzocca Liviu Librescu, Gianfranco Chiocchia. Implications of cubic physical/aerodynamic non-linearities on the character of the flutter instability boundary. International Journal of Non-Linear Mechanics, 38(2):173–199, March 2003. doi:10.1016/S0020-7462(01)00054-3.CrossRefGoogle Scholar
  17. 17.
    A. Tamer and P. Masarati. Stability of nonlinear, time-dependent rotorcraft systems using lyapunov characteristic exponents. Journal of the American Helicopter Society, 61(2):14–23, 2016.CrossRefGoogle Scholar
  18. 18.
    Pierangelo Masarati and Aykut Tamer. Sensitivity of trajectory stability estimated by lyapunov characteristic exponents. Aerospace Science and Technology, 47:501–510, 2015.CrossRefGoogle Scholar
  19. 19.
    Nguyen Dinh Cong and Hoang Nam. Lyapunov’s inequality for linear differential algebraic equation. Acta Mathematica Vietnamica, 28(1):73–88, 2003.MathSciNetzbMATHGoogle Scholar
  20. 20.
    Nguyen Dinh Cong and Hoang Nam. Lyapunov regularity of linear differential algebraic equations of index 1. Acta Mathematica Vietnamica, 29(1):1–21, 2004.MathSciNetzbMATHGoogle Scholar
  21. 21.
    Pierangelo Masarati. Estimation of Lyapunov exponents from multibody dynamics in differential-algebraic form. Proc. IMechE Part K: J. Multi-body Dynamics, 227(4):23–33, 2013. doi:10.1177/1464419312455754.Google Scholar
  22. 22.
    Karlheinz Geist, Ulrich Parlitz, and Werner Lauterborn. Comparison of different methods for computing Lyapunov exponents. Progress of Theoretical Physics, 83(5):875–893, May 1990. doi:10.1143/PTP.83.875.MathSciNetCrossRefGoogle Scholar
  23. 23.
    Pierangelo Masarati and Aykut Tamer. The real schur decomposition estimates lyapunov characteristic exponents with multiplicity greater than one. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 230(4):568–578, 2016.Google Scholar
  24. 24.
    E.H. Dowell L.N. Virgin M.D. Conner, D.M. Tang, Nonlinear behavior of a typical airfoil section with control surface freeplay: a numerical and experimental study. Journal of Fluids and Structures, 11:89–109, January 1997.CrossRefGoogle Scholar
  25. 25.
    John W. Edwards, Holt Ashley, and John V. Breakwell. Unsteady aerodynamic modeling for arbitrary motions. AIAA Journal, 17(4):365–374, April 1979. doi:10.2514/3.7348.CrossRefGoogle Scholar
  26. 26.
    T. Theodorsen and I.E. Garrick, Nonstationary flow about a wing-aileron-tab combination including aerodynamic balance. Report 736, NACA, 1942.Google Scholar
  27. 27.
    J. Awrejcewicz, G. Kudra. Stability analysis and Lyapunov exponents of a multi-body mechanical system with rigid unilateral constraints. Nonlinear Analysis, 63:e909–e918, 2005. doi:10.1016/ Scholar
  28. 28.
    R. Vasconcellos, A. Abdelkefi, F.D. Marques, and M.R. Hajj, Representation and analysis of control surface freeplay nonlinearity. Journal of Fluids and Structures, 31:79–91, 2012. doi:10.1016/j.jfluidstructs.2012.02.003.CrossRefGoogle Scholar
  29. 29.
    Rui Vasconcellos, Abdessattar Abdelkefi, Muhammad R. Hajj, and Flavio Marques. Discontinuity induced bifurcation in aeroelastic systems with freeplay nonlinearity. In 22nd International Congress of Mechanical Engineering (COBEM’13), pages 2832–2843, Ribeirao Preto, SP, Brasil, November 3–7 2013.Google Scholar
  30. 30.
    Alfredo Medio and Marji Lines. Nonlinear Dynamics — A Primer. Cambridge University Press, 22. 2001.CrossRefGoogle Scholar

Copyright information

© AIDAA Associazione Italiana di Aeronautica e Astronautica 2017

Authors and Affiliations

  • A. Tamer
    • 1
  • P. Masarati
    • 1
  1. 1.Dipartimento di Scienze e Tecnologie AerospazialiPolitecnico Di MilanoItaly

Personalised recommendations