Aerotecnica Missili & Spazio

, Volume 96, Issue 3, pp 136–147 | Cite as

WAGNER: a new code for parametrical structural study of fuselages of civil transport aircraft

  • M. Picchi Scardaoni
  • V. Binante
  • V. Cipolla


In the present paper, a new code (named WAGNER) for a parametric and automatic Finite Element mesh generation of fuselages of civil transport aircraft is presented. The code aims at providing a time-cheap and reliable tool in the conceptual design phase in order to evaluate stresses and deformations in the whole fuselage structure; these data allows us a preliminary structural sizing to be used as a baseline for deeper investigations and to determine the empty weight of the fuselage on view of a preliminary prediction of the maximum take-of weight of the aircraft. As an example of application, two layouts have been analysed: a non conventional two aisle single-deck (SD) with 2-4-2 passengers abreast and a double-deck (DD) with 3–3 passengers abreast/deck. FEM results for two different load cases (combined loads at limit load factor and ultimate pressurization) with geometrical linear and non-linear solutions, are finally discussed.



Angle of attack


Auxiliary angle


Angle of sideslip


Beam inclination angle


Bending moments ratio with and without a rod

Time derivative of X

\(\left[ {\frac{t}{c}} \right]\)

Airfoil thickness (percent)


Sweep angle, beam slenderness


Taper ratio

Lb, Mb, Nb

Moments resultants along body frame axes


Roll angle


Yaw angle


Pitch angle


Cross section area

c, cR, cT

Airfoil chord, root chord, tip chord


Center of gravity


Combined loads


Double-deck confguration


Young ’s modulus


Gravity acceleration


Inertia relief


Cross section moment of inertia


Wing planform span, beam length


Bending moment


Maximum take-of weight


Vertical load factor






Line load


Reference Point


Single-deck confguration


Ultimate pressure load case


Flight speed

Xb, Yb, Zb

Forces resultants along body frame axes

xb, yb, zb

Body frame axes


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Picchi Scardaoni M., Wagner: a new code for automatic parametric structural study of PrandtlPlane fuselages, Master’s degree thesis, University of Pisa, 2017.Google Scholar
  2. 2.
    Farrar D. J., “The Design of Compression Structures for Minimum Weight”, Royal Aeronautical society, 53, 1041, 1949.CrossRefGoogle Scholar
  3. 3.
    Baldini M., Dimartino C., Analisi agli elementi finiti di un tronco di fusoliera di un velivolo Prandtl Plane sottoposto a carichi limite di pressurizzazione e di massa, Master’s degree thesis, University of Pisa, 2008.Google Scholar
  4. 4.
    Frediani A., Cipolla V., Abu Salem K., Binante V., Picchi Scardaoni M., “On the preliminary design of Prandtl Plane civil transport aircraft”, 7thEucass Conference, Milan, July 2017.Google Scholar
  5. 5.
    Bruhn E. F., Schmitt A. F., Analysis and design of flight vehicle structures, Tri-State Offset Company, 1973Google Scholar
  6. 6.
    Frediani A., Cipolla V., Binante V., Abu Salem K., Maganzi M., “Parsifal project: a breackthrough innovation in air transport”, XXIV AIDAA International Conference, Palermo, September 2017.Google Scholar
  7. 7.
    Niu M. C. Y., Composite airframe structures: practical design information and data, Conmilit Press Ltd., 1992.Google Scholar
  8. 8.
    Anon, Certification Specifications and Acceptable Means of Compliance for Large Aeroplanes CS 25, Amendment 20, 2017.Google Scholar
  9. 9.
    Lomax T. L., Structural loads analysis for commercial transports aircraft: theory and practice, “AIAA Education Series”, 1996, pp 205.CrossRefGoogle Scholar
  10. 10.
    Casarosa C., Meccanica del volo, Pisa University Press, 2013.Google Scholar
  11. 11.
    Mcruer D., Ashkenas I., Graham D., Aircraft dynamics and automatic control, Princeton University Press, 1973, pp 203–243.Google Scholar
  12. 12.
    Cipolla V., Frediani A., Abu Salem K., Binante V., Maganzi M., Rizzo E. “Preliminary transonic CFD analyses of a PrandtlPlane transport aircraft”, Aerospace Europe 6th CEAS Conference, Bucharest, October 2017.Google Scholar
  13. 13.
    Anon, Short-Medium Range Aircraft AEA requirements, Association of European Airlines, 1987, pp 10–13.Google Scholar
  14. 14.
    Santschi W. R., Dubois J., Omoto C., Moments of inertia and centers of gravity of the living human body, “Technical documentary report no. AMRL-TDR-63-36”, NORTH AMERICAN AVIATION INC, 1963.CrossRefGoogle Scholar
  15. 15.
    Costa G., Ballerini G., Codice per il dimensionamento preliminare di strutture alari ti tipo Boxwing, Master’s degree thesis, University of Pisa, 2011.Google Scholar
  16. 16.
    Beltramo M., Trapp D., Kimoto B., Marsh D. Parametric study of transport aircraft systems cost and weight, Report NASA CR151970, 1977.Google Scholar
  17. 17.
    Cipolla V., Abu Salem K., Bachi F., “Method for preliminary stability analysis of a PrandtlPlane aircraft in subsonic conditions”, EASA Congress, Warsaw, 2017.Google Scholar
  18. 18.
    Ugural A. C., Stresses in plates and shells. McGraw-Hill International Editions, 1999.Google Scholar
  19. 19.
    Raymer D., Aircraft design: a conceptual approach, 20. “AIAA Education Series”, 1989.Google Scholar

Copyright information

© AIDAA Associazione Italiana di Aeronautica e Astronautica 2017

Authors and Affiliations

  • M. Picchi Scardaoni
    • 1
  • V. Binante
    • 2
  • V. Cipolla
    • 2
  1. 1.Department of Civil and Industrial Engineering, Aerospace sectionUniversity of PisaItaly
  2. 2.SkyBox Engineering S. r. l.Italy

Personalised recommendations