Advertisement

Aerotecnica Missili & Spazio

, Volume 96, Issue 3, pp 136–147 | Cite as

WAGNER: a new code for parametrical structural study of fuselages of civil transport aircraft

  • M. Picchi Scardaoni
  • V. Binante
  • V. Cipolla
Article

Abstract

In the present paper, a new code (named WAGNER) for a parametric and automatic Finite Element mesh generation of fuselages of civil transport aircraft is presented. The code aims at providing a time-cheap and reliable tool in the conceptual design phase in order to evaluate stresses and deformations in the whole fuselage structure; these data allows us a preliminary structural sizing to be used as a baseline for deeper investigations and to determine the empty weight of the fuselage on view of a preliminary prediction of the maximum take-of weight of the aircraft. As an example of application, two layouts have been analysed: a non conventional two aisle single-deck (SD) with 2-4-2 passengers abreast and a double-deck (DD) with 3–3 passengers abreast/deck. FEM results for two different load cases (combined loads at limit load factor and ultimate pressurization) with geometrical linear and non-linear solutions, are finally discussed.

Nomenclature

α

Angle of attack

αΛ

Auxiliary angle

β

Angle of sideslip

γ

Beam inclination angle

η

Bending moments ratio with and without a rod

Time derivative of X

\(\left[ {\frac{t}{c}} \right]\)

Airfoil thickness (percent)

Λ

Sweep angle, beam slenderness

λ

Taper ratio

Lb, Mb, Nb

Moments resultants along body frame axes

Φ

Roll angle

Ψ

Yaw angle

Θ

Pitch angle

A

Cross section area

c, cR, cT

Airfoil chord, root chord, tip chord

CG

Center of gravity

CL

Combined loads

DD

Double-deck confguration

E

Young ’s modulus

g

Gravity acceleration

IR

Inertia relief

J

Cross section moment of inertia

L

Wing planform span, beam length

M

Bending moment

MTOW

Maximum take-of weight

nz

Vertical load factor

p

Pressure

PrP

PrandtlPlane

q

Line load

RP

Reference Point

SD

Single-deck confguration

UP

Ultimate pressure load case

V0

Flight speed

Xb, Yb, Zb

Forces resultants along body frame axes

xb, yb, zb

Body frame axes

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Picchi Scardaoni M., Wagner: a new code for automatic parametric structural study of PrandtlPlane fuselages, Master’s degree thesis, University of Pisa, 2017.Google Scholar
  2. 2.
    Farrar D. J., “The Design of Compression Structures for Minimum Weight”, Royal Aeronautical society, 53, 1041, 1949.CrossRefGoogle Scholar
  3. 3.
    Baldini M., Dimartino C., Analisi agli elementi finiti di un tronco di fusoliera di un velivolo Prandtl Plane sottoposto a carichi limite di pressurizzazione e di massa, Master’s degree thesis, University of Pisa, 2008.Google Scholar
  4. 4.
    Frediani A., Cipolla V., Abu Salem K., Binante V., Picchi Scardaoni M., “On the preliminary design of Prandtl Plane civil transport aircraft”, 7thEucass Conference, Milan, July 2017.Google Scholar
  5. 5.
    Bruhn E. F., Schmitt A. F., Analysis and design of flight vehicle structures, Tri-State Offset Company, 1973Google Scholar
  6. 6.
    Frediani A., Cipolla V., Binante V., Abu Salem K., Maganzi M., “Parsifal project: a breackthrough innovation in air transport”, XXIV AIDAA International Conference, Palermo, September 2017.Google Scholar
  7. 7.
    Niu M. C. Y., Composite airframe structures: practical design information and data, Conmilit Press Ltd., 1992.Google Scholar
  8. 8.
    Anon, Certification Specifications and Acceptable Means of Compliance for Large Aeroplanes CS 25, Amendment 20, 2017.Google Scholar
  9. 9.
    Lomax T. L., Structural loads analysis for commercial transports aircraft: theory and practice, “AIAA Education Series”, 1996, pp 205.CrossRefGoogle Scholar
  10. 10.
    Casarosa C., Meccanica del volo, Pisa University Press, 2013.Google Scholar
  11. 11.
    Mcruer D., Ashkenas I., Graham D., Aircraft dynamics and automatic control, Princeton University Press, 1973, pp 203–243.Google Scholar
  12. 12.
    Cipolla V., Frediani A., Abu Salem K., Binante V., Maganzi M., Rizzo E. “Preliminary transonic CFD analyses of a PrandtlPlane transport aircraft”, Aerospace Europe 6th CEAS Conference, Bucharest, October 2017.Google Scholar
  13. 13.
    Anon, Short-Medium Range Aircraft AEA requirements, Association of European Airlines, 1987, pp 10–13.Google Scholar
  14. 14.
    Santschi W. R., Dubois J., Omoto C., Moments of inertia and centers of gravity of the living human body, “Technical documentary report no. AMRL-TDR-63-36”, NORTH AMERICAN AVIATION INC, 1963.CrossRefGoogle Scholar
  15. 15.
    Costa G., Ballerini G., Codice per il dimensionamento preliminare di strutture alari ti tipo Boxwing, Master’s degree thesis, University of Pisa, 2011.Google Scholar
  16. 16.
    Beltramo M., Trapp D., Kimoto B., Marsh D. Parametric study of transport aircraft systems cost and weight, Report NASA CR151970, 1977.Google Scholar
  17. 17.
    Cipolla V., Abu Salem K., Bachi F., “Method for preliminary stability analysis of a PrandtlPlane aircraft in subsonic conditions”, EASA Congress, Warsaw, 2017.Google Scholar
  18. 18.
    Ugural A. C., Stresses in plates and shells. McGraw-Hill International Editions, 1999.Google Scholar
  19. 19.
    Raymer D., Aircraft design: a conceptual approach, 20. “AIAA Education Series”, 1989.Google Scholar

Copyright information

© AIDAA Associazione Italiana di Aeronautica e Astronautica 2017

Authors and Affiliations

  • M. Picchi Scardaoni
    • 1
  • V. Binante
    • 2
  • V. Cipolla
    • 2
  1. 1.Department of Civil and Industrial Engineering, Aerospace sectionUniversity of PisaItaly
  2. 2.SkyBox Engineering S. r. l.Italy

Personalised recommendations