Advertisement

Aerotecnica Missili & Spazio

, Volume 96, Issue 1, pp 63–74 | Cite as

Numerical and experimental transition prediction on a realistic laminar swept wing

  • D. G. Romano
  • D. de Rosa
  • R. S. Donelli
Article

Abstract

This paper is aimed at providing the outcomes of an activity carried out inside an Italian National Program named VITAS (Vettore Innovativo per il Trasporto AeroSostenibile) [1]. The goal of the project was to design a transonic wing with an extended natural laminar region for a business jet (8–12 seats). Both experimental and numerical activities were carried out in order to define and verify the performance of this laminar wing. The paper will deal with the numerical activities, experimental/numerical comparison will be shown and results will be discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vitas project — codice univoco ricerca wsa07770, 2002–2005.Google Scholar
  2. 2.
    D. Keith Walters and James H. Leylek. Computational fluid dynamics study of wake-induced transition on a compressor-like flat plate. Journal of Turbomachinery, 127(1):52–63, Feb 2005.CrossRefGoogle Scholar
  3. 3.
    Robin B. Langtry and Florian R. Menter. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA Journal, 47(12):2894–2906, Dec 2009.CrossRefGoogle Scholar
  4. 4.
    Florian R. Menter, Pavel E. Smirnov, Tao Liu, and Ravikanth Avancha. A one-equation local correlation-based transition model. Flow, Turbulence and Combustion, 95(4):583–619, 2015.CrossRefGoogle Scholar
  5. 5.
    J. L. Van Ingen. A suggested semi-empirical method for the calculation of the boundary layer transition region. Technical Report VTH-74, University of Technology, Delft, 1956.Google Scholar
  6. 6.
    A.M.O. Smith and N. Gamberoni. Transition, pressure gradient and stability theory. Douglas Aircraft Company, 1956.Google Scholar
  7. 7.
    U. Cella, D. Quagliarella, R. S. Donelli, and B. Imperatore. Design and test of the uw-5006 transonic natural-laminar-flow wing. Journal of Aircraft, 47(3):783–795, May 2010.CrossRefGoogle Scholar
  8. 8.
    Metacomp Technologies Inc. CFD++ v10.1.2 R1 — User Manual.Google Scholar
  9. 9.
    R. Houdeville. Descriptif et mode d’emploi du code 3C3D. ONERA, RT DMAE N.° 1/15066, version v5.4.2.3 edition, Nov 2009.Google Scholar
  10. 10.
    P. De Matteis, R. S. Donelli, and P. Luchini. Application of the ray-tracing theory to the stability analysis of three-dimensional incompressible boundary layers. In XIII AIDAA Conference, 1995.Google Scholar
  11. 11.
    R. S. Donelli and P. Luchini. New and emerging techniques for transition prediction. ERCOF-TAC SIG 33 Workshop, Ravello, Italy. ERCOF-TAC Bulletin, N. 48, March 2001, April 2000.Google Scholar
  12. 12.
    ANSYS, Inc. ANSYS ICEM CFD — User Manual.Google Scholar
  13. 13.
    F. R. Menter. Zonal Two Equation k — ω Turbulence Models for Aerodynamic Flows. AIAA Journal, (93-2906), 1993.Google Scholar
  14. 14.
    Mark Drela. A User’s Guide to MSES 2.9. MIT Computational Aerospace Sciences Laboratory, October 1995.Google Scholar
  15. 15.
    Wind Tunnel Tests Of The UW-5006-NLF Wing. Technical Report CIRA-CF-06-0402, CIRA, 2006.Google Scholar
  16. 16.
    L. M. Mack. On the stability of the boundary layer on a transonic swept wing. AIAA paper, 0264, 1979.Google Scholar

Copyright information

© AIDAA Associazione Italiana di Aeronautica e Astronautica 2017

Authors and Affiliations

  • D. G. Romano
    • 1
  • D. de Rosa
    • 2
  • R. S. Donelli
    • 3
  1. 1.Piaggio High TechnologyPiaggio Aero Industries S.p.A.Italy
  2. 2.Laboratorio di Modellistica FluidodinamicaCIRA - Centro Italiano Ricerche AerospazialiItaly
  3. 3.Programmazione Strategica e Sviluppo BusinessCIRA - Centro Italiano Ricerche AerospazialiItaly

Personalised recommendations