Aerotecnica Missili & Spazio

, Volume 96, Issue 1, pp 3–15 | Cite as

Applications of optimal finite thrust orbital transfers

  • L. Mazzini
  • M. Cerreto


Using the theory developed by one of the authors in a previous paper, the authors discuss and present solutions for the low thrust orbital transfer in a large number of applications of practical interest:

  1. 1.

    Telecommunication missions from the Geostationary Transfer Orbit (GTO) or the Low Earth Orbit (LEO) to the Geostationary Earth Orbit (GEO).

  2. 2.

    Navigation missions from GTO or LEO to the Medium Earth Orbit (MEO).

  3. 3.

    LEO and MEO constellation deployment.


Some emerging topics of Mission Analysis have been addressed, such as the optimization of the deployment of a constellation with orbits at different RAANs, the introduction of constraints in the trajectory like the minimum perigee altitude, and the existence of many extremal solutions for the same problem. The authors have discussed and solved these problems including the J2 and eclipse effects.

Index Terms

Optimization Finite Thrust 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Mazzini, “Flexible Spacecraft Dynamics, Control and Guidance”, Springer, Rome, 2015.zbMATHGoogle Scholar
  2. 2.
    L. Mazzini, “Finite thrust orbital transfers”, Acta Astro-nautica, Volume 100, p. 107–128 (2014).CrossRefGoogle Scholar
  3. 3.
    C. Ferrier and R. Epenoy, “Optimal control for engines with electro-ionic propulsion under constraint of eclipse”, Acta Astronautica 48 (4) (2001) 181–192.CrossRefGoogle Scholar
  4. 4.
    C. A. Kluever, “Low thrust trajectory optimization using orbital averaging and control parametrization”, in: B. A. Conway (Ed.), Spacecraft Trajectory Optimization, Cambridge University Press, pp. 112–138 (Chapter5).Google Scholar
  5. 5.
    L. Mazzini, “Time open orbital transfer in a transformed Hamiltonian setting”, J. Guid. Control Dyn. 36, September — October (5), 2013.Google Scholar
  6. 6.
    Jang-Won Jo and J.E. Prussing, “Procedure for Applying Second Order Conditions in Optimal Control Problems”, Journal of Guidance, Control, and Dynamics, Vol. 23, No. 2, March-April 2000Google Scholar
  7. 7.
    B. Chachuat, “Non linear and dynamic optimization, from theory to practice”, La-Teaching, 2007-001, Ecole Polytechnique Federale de LausanneGoogle Scholar
  8. 8.
    J. A. Kechichian, “Analytic representations of optimal low thrust transfer in circular orbits”, in: B. A. Conway (Ed.), Spacecraft Trajectory Optimization, Cambridge University Press, pp.139-177 (Chapter6).Google Scholar
  9. 9.
    J. A. Sanders, F. Verhulst and J. Murdock, “Averaging methods in Nonlinear Dynamical Systems”, 2nd edn., vol. 59 (Springer — Applied Mathematical Sciences) (2000)Google Scholar
  10. 10.
    M. Pontani, G. Cecchetti and P. Teofilatto, “Variable time domain neighboring optimal guidance applied to space trajectories”. Article  Nov 2015  Acta AstronauticaGoogle Scholar

Copyright information

© AIDAA Associazione Italiana di Aeronautica e Astronautica 2017

Authors and Affiliations

  • L. Mazzini
    • 1
  • M. Cerreto
    • 1
  1. 1.Thales Alenia SpaceFrance

Personalised recommendations