Aerotecnica Missili & Spazio

, Volume 95, Issue 3, pp 136–144 | Cite as

Tests of Sapphire Optical Fiber Sensors for Strain Monitoring in High Temperature Environment

  • C. Paris
  • C. Vendittozzi
  • A. Paolozzi
  • F. Felli


Strain sensors based on optical fiber technology have a number of advantages over more conventional resistive strain gages. Optical fiber sensors are immune to electromagnetic interferences, resistant to corrosion, are safe to be used in explosion or fire hazard areas, and can be embedded inside materials. Commercially available solutions include the Fiber Bragg Grating (FBG) sensors and the Distributed Strain and Temperature Sensors, based on Brillouin scattering; both technologies are using fused silica optical fibers. FBG sensors application is limited to temperature up to 300 °C; solution for high temperature applications (up to 1000 °C) have been developed but are not commercially available. Sapphire optical fibers have a very high melting point (2030 °C) and are promising for high temperature monitoring. Sapphire fibers can be embedded inside metals and ceramic materials. However, even if FBG sensors can be written inside sapphire fibers with femtosecond UV lasers, there are no solutions available on the market. This work describes a test to verify the possibility of monitoring strain using a sapphire fiber embedded into a metal specimen, by monitoring the power loss of the light transmitted through the fiber.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Paolozzi, F. Felli, M. A. Caponero, “Global temperature measurements of aluminium alloy specimens with embedded optical fibers”, Structural Health Montoring 2000, (Chang F.K.), Vol. 1, pp. 257–264, Stanford, CA, September 08–10, 1999.Google Scholar
  2. 2.
    A. Paolozzi, F. Felli, A. Brotzu, “Embedding optical fibers into cast aluminum alloys”, Applied mechanics in the Americas, Vol. 7, pp. 639–642, American Academy of Mechanics, 1999.Google Scholar
  3. 3.
    F. Felli, A. Paolozzi, M. Caponero, “Fabrication of intelligent aluminum matrix composite”, Aluminum Transactions, Vol. 2, pp. 189–194, 2000.Google Scholar
  4. 4.
    A. Paolozzi, F. Felli, “Broad band tests on metallic specimens by embedded optical fibers”, XVI AIDAA Conference 2001, Palermo (Italy).Google Scholar
  5. 5.
    M.A. Caponero, F. Felli, A. Paolozzi, I. Peroni, “Vibration tests on metal alloys with embedded optical fibers”, Smart Materials and MEMS, Proceedings of SPIE, the International Society for Optical Engineering, Vol. 4234, pp. 152–159, 2001.CrossRefGoogle Scholar
  6. 6.
    M. A. Caponero, F. Felli, A. Paolozzi, “Strain maesurement with FBGs embedded into cast metal alloys”, The Seventh Japan International SAMPE Symposium. Information and innovation in composites technologies, T. Ishikawa, S. Sugimoto eds., Vol. 1, pp. 661–664, Tokyo, Japan, November 13–16, 2001.Google Scholar
  7. 7.
    A. Paolozzi, M. A. Caponero, F. Cassese, M. Leonardi, “Use of embedded optical fibers for structural analysis”, XVII International Modal Analysis Conference (IMAC), Vol. 1, pp. 699–704, Orlando, FL, Feb. 1999.Google Scholar
  8. 8.
    L. Benussi, S. Bianco, S. Colafranceschi, D. Colonna, L. Daniello, F. L. Fabbri, M. Giardoni, B. Ortenzi, A. Paolozzi, et al., “The CMS RPC gas gain monitoring system: an overview and preliminary results”, Nuclear Instruments and Methods in Physics Research A, Vol. 602, pp. 805–808, 2009.CrossRefGoogle Scholar
  9. 9.
    L. Benussi, S. Bianco, S. Colafranceschi, F. L. Fabbri, F. Felli, M. Ferrini, M. Giardoni, T. Greci, A. Paolozzi, L. Passamonti, et al., “Study of gas purifiers for the CMS RPC detector”, Nuclear instruments & methods in physics research, Section A, accelerators, spectrometers, detectors and associated equipment, Vol. 661, pp. 241–244, 2012.CrossRefGoogle Scholar
  10. 10.
    M. Abbrescia, A. Colaleo, R. Guida, G. Iaselli, R. Liuzzi, F. Loddo, M. Maggi, B. Marangelli, S. Natali, S. Nuzzo, et al., “Gas analysis and monitoring systems for the RPC detector of CMS at LHC”, arXiv:physics/0701014 [physics.ins-det], December 30, 2006.Google Scholar
  11. 11.
    A. Cusano, P. Capoluogo, S. Campopiano, A. Cutolo, M. Giordano, M. Caponero, F. Felli, A. Paolozzi, “Dynamic measurements on a star tracker prototype of AMS using fiber optic sensors”, Smart materials and structures, Vol. 15, pp. 441–450, 2006.CrossRefGoogle Scholar
  12. 12.
    A. Paolozzi, P. Gasbarri, “Dynamic analysis with fibre optic sensors for Structural Health Monitoring”, NATO-RTO-AVT. Multifunctional Structures / Integration of Sensors and Antennas, pp. 9.1–9.24, Vilnius, Lituania, 2–6 October, 2006.Google Scholar
  13. 13.
    L. Benussi, M. Bertani, S. Bianco, M. A. Caponero, F. Fabbri, F. Felli, M. Giardoni, A. La Monaca, E. Pace, M. Pallotta, A. Paolozzi, “Use of Fiber Bragg Gratings sensors for position monitoring in high energy physics experiment BTeV”, IEEE Sensor 2002, pp. 874–879, Orlando FL, USA, June 11–14, 2002.Google Scholar
  14. 14.
    C. Vendittozzi, G. Sindoni, C. Paris, P. Persi del Marmo, “Application of an FBG sensors system for structural health monitoring and high performance trimming on racing yacht”, Fifth International Conference on Sensing Technology (ICST), pp. 617–622, Palmerston North, New Zealand, 28 Nov.–01 Dec. 2011.Google Scholar
  15. 15.
    F. Felli, A. Paolozzi, C. Vendittozzi, C. Paris, H. Asanuma, “Use of FBG sensors for health monitoring of pipelines”, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2016, Proc. of SPIE, Vol. 9803, 2016.Google Scholar
  16. 16.
    A. Paolozzi, F. Felli, C. Vendittozzi, C. Paris, H. Asanuma, “Analysis of FBG sensors data for pipeline monitoring”, ASME 2016 Conference on Smart Materials, Adaptive Structures and Intelligent Systems SMASIS2016, Stowe, VT, USA, September 28–30, 2016.Google Scholar
  17. 17.
    L. Benussi, M. Bertani, S. Bianco, M. A. Caponero, D. Colonna, et al., “The Omega-like: a novel device using FBG sensors to position vertex detectors with micromet-ric precision”, Nuclear Physics B-Proceedings Supplements, Vol. 172, pp. 263–265, 2007.CrossRefGoogle Scholar
  18. 18.
    A. Bramante, M. Caponero, G. Coppotelli, M. Cotogni, A. Paolozzi, C. Paris, I. Peroni, “New technology for aerospace sensors. Satellite dynamic and thermal measurements using fiber optic FBG sensors”, Proceedings of the 6th International Symposium on Environmental Testing for Space Programmes, ESA/ESTEC, Noordwijk, The Netherlands, 12–14 June 2007.Google Scholar
  19. 19.
    A. Paolozzi, C. Paris, “A proposal to use FBG sensors for thermo-vacuum tests of space structures”, XIX AIDAA Conference, Forlı’, Italy, 2007.Google Scholar
  20. 20.
    C. Paris, C. Vendittozzi, A. Basaglia, “Experimentation of fiber optic FBG sensors in a CFRP aerospace component”, XXII AIDAA Conference, Neaples (Italy), 2013.Google Scholar
  21. 21.
    A. Paolozzi, I. Ciufolini, C. Paris, L. Acquaroli, P. Pier-sigilli, A. Gabrielli, “Tests on LARES Separation Systems Components Using Fiber Optic Sensors”, XX AIDAA Conference, Milano (Italy), 2009.Google Scholar
  22. 22.
    A. Paolozzi, I. Ciufolini, I. Peroni, F. M. Onorati, L. Acquaroli, L. Scolamiero, G. Sindoni, C. Paris, C. Vendittozzi, M. Ramiconi, N. Preli, A. Lucantoni, F. Passeggio, S. Berardis, “Fibre optic sensors for the validation of the numerical simulation on the breadboard of the LARES separation system”, 59th International Astronautical Conference IAC 2008, Glasgow (Scotland), 2008.Google Scholar
  23. 23.
    C. Lupi, F. Felli, M. A. Caponero, A. Paolozzi, “The effectiveness of metal coating on FBG sensor sensitivity at cryogenic temperature”, Proceedings of SPIE, The International Society for Optical Engineering, Vol. 6619, pp. 161–164, 2007.Google Scholar
  24. 24.
    C. Lupi, F. Felli, L. Ippoliti, M. A. Caponero, F. Fabbri, A. Paolozzi, “Lead coating to improve Fibre Bragg Grating sensitivity at cryogenic temperatures”, Proceedings of SPIE, The International Society for Optical Engineering, Vol. 5855 (2), pp. 811–815, 2005.Google Scholar
  25. 25.
    D. Grobnic, C. W. Smelser, S. J. Mihailov and R. B. Walker, “Long-term thermal stability tests at 1000 °C of silica Fibre Bragg Gratings made with ultrafast laser radiation”, Measurement Science and Technology, Vol. 17, pp. 1009–1013, 2006.CrossRefGoogle Scholar
  26. 26.
    C. Zhun, “Femtosecond laser inscribed fiber Bragg grating sensors”, PhD Dissertation, The Pennsylvania State University, College of Engineering, 2007.Google Scholar
  27. 27.
    S. J. Mihailov, “Fiber Bragg Grating Sensors for Harsh Environments”, Sensors, Vol. 12, pp. 1898–1918, 2012.CrossRefGoogle Scholar
  28. 28.
    F. Finamore, C. Bruno, A. Paolozzi, D. Currie, “A spectrometric device to measure species concentrations close to the surface during re-entry”, Space Technology, Vol. 26, pp. 25–32, 2006.Google Scholar
  29. 29.
    A. Paolozzi, F. Felli, T. Valente, M. A. Camponero, M. Tului, “Preliminary tests for an intelligent thermal protection system for space vehicles”, Symposium on Smart Materials and MEMS. Proceedings of SPIE, The International Society for Optical Engineering, Vol. 4234, pp. 160–167, 2001.Google Scholar
  30. 30.
    R. R. Dils, “High-temperature optical fiber thermometer”, Journal of Applied Physics, Vol. 54, pp. 1198–1201, 1983.CrossRefGoogle Scholar
  31. 31.
    A. Wang, S. Gollapudi, R. G. May, K. A. Murphy, and R. O. Claus, “Sapphire optical fiber-based interferometer for high temperature environmental applications”, Smart Materials and Structures, Vol. 4, no. 2, pp. 147–151, June 1995.CrossRefGoogle Scholar
  32. 32.
    A. Wang, S. Gollapudi, K. A. Murphy, R. G. May, R. O. Claus, “Sapphire-fiber-based intrinsic Fabry-Perot interferometer”, Optics Letters, Vol. 17, No. 14, July 15, 1992.Google Scholar
  33. 33.
    M. Busch, W. Ecke, I. Latka, D. Fischer, R. Willsch, H. Bartelt, “Inscription and characterization of Bragg gratings in single-crystal sapphire optical fibres for high-temperature sensor applications”, Measurement Science and Technology, Vol. 20, N. 11, P. 115–301, 2009.CrossRefGoogle Scholar
  34. 34.
    D. Grobnic, S. J. Mihailov, C. W. Smelser, H. Ding, “Sapphire fiber Bragg grating sensor made using femtosecond laser radiation for ultrahigh temperature applications”, IEEE Photonics Technology Letters, Vol. 16, pp. 2505–2507, 2004.CrossRefGoogle Scholar
  35. 35.
    D. Grobnic, S. J. Mihailov, H. Ding, F. Bilodeau, C. W. Smelser, “Single and low order mode interrogation of a multimode sapphire fibre Bragg grating sensor with tapered fibres”, Measurement Science and Technology, Vol. 17, pp. 980–984, 2006.CrossRefGoogle Scholar
  36. 36.
    H. Xiao, J. Deng, J. Pickrell, R. G. May, “Single-crystal sapphire fiber-based strain sensor for high-temperature applications”, Journal of Lightwave Technology, Vol. 21, Issue 10, 2003.Google Scholar
  37. 37.
    F. Felli, D. Pilone, A. Scicutelli, C. Lupi, L. Ippoliti, “Special optical fibres embedded in Ni superalloy devices as monitoring systems”, International Symposium on Advances and Trends in Fiber Optics and Applications ATFO2004, Chongqing University, Chongqing, China, October 11–15, 2004.Google Scholar
  38. 38.
    ASTM B240-13, Standard Specification for Zinc and Zinc-Aluminum (ZA): Alloys in Ingot Form for Foundry and Die Castings, ASTM International, West Conshohocken, PA, 2013.Google Scholar
  39. 39.
    H. Asanuma, O. Haga, K. Rimura, J. I. Ohira, H. Kurihara, A. Paolozzi, “In situ formation of strain sensors by breaking optical fibers in structural materials”, Journal of Thermoplastic Composite Materials, Vol. 19, pp. 277–292, 2006.CrossRefGoogle Scholar

Copyright information

© AIDAA Associazione Italiana di Aeronautica e Astronautica 2016

Authors and Affiliations

  • C. Paris
    • 1
    • 2
  • C. Vendittozzi
    • 3
  • A. Paolozzi
    • 2
    • 1
  • F. Felli
    • 4
  1. 1.Museo Storico della Fisica e Centro Studi e Ricerche Enrico FermiItaly
  2. 2.Scuola di Ingegneria AerospazialeSapienza Università di RomaItaly
  3. 3.LAICA - Laboratory of Aerospace Science and InnovationUniversidade de BrasiliaItaly
  4. 4.Dipartimento Ingegneria Chimica Materiali AmbienteSapienza Università di RomaItaly

Personalised recommendations