Advertisement

Aerotecnica Missili & Spazio

, Volume 95, Issue 2, pp 82–91 | Cite as

Effect of gas—phase carbon depletion by sooting on the structure of methane/air flamelets

  • F. Bonifazi
  • D. Lentini
Article

Abstract

The paper describes an approach to model soot formation/oxidation in nonpremixed turbulent flames, which in particular accounts for the effect of gas—phase carbon depletion due to sooting. The effect is relevant to combustion chambers fed with oxygen (rather than air), operating at high pressure and overall rich, such as rocket chambers. A scaled gas—phase elemental carbon mass fraction is introduced to this end and, in the framework of a laminar flamelet approach, a library is developed for use in turbulent combustion models. Due to the lack of reference data for rocket chambers conditions, the library is limited for the time being to nonpremixed methane/air flames at two values of pressure, 1 atm and 3 atm, for which experimental data are available. Results indicate a significant effect of carbon depletion on the concentration of soot precursor acetylene in particular, and on the ensuing soot nucleation rate. The model is shown to correctly capture the decrease of the latter rate with gas—phase carbon depletion, thereby potentially enabling to extend the range of applicability of semi—empirical soot prediction models for nonpremixed turbulent combustion.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. M. Kennedy, “Models of soot formation and oxidation”, Prog. Energy Combust. Sci., Vol. 23, pp. 95–132, 1997.CrossRefGoogle Scholar
  2. 2.
    K. J. Syed, C. D. Stewart and J. B. Moss, “Modelling soot formation and thermal radiation in buoyant turbulent diffusion flames”, Proc. Combust. Inst., Vol. 23, pp. 1533–1541, 1991.CrossRefGoogle Scholar
  3. 3.
    P. R. Lindstedt, “Simplified soot nucleation and surface growth steps for non-premixed flames”, in H. Bockhorn (Ed.), Soot formation in combustion, Springer, Berlin, Chap. 27, pp. 417–439, 1994.CrossRefGoogle Scholar
  4. 4.
    R. Said, A. Garo and R. Borghi, “Soot formation modelling for turbulent flames”, Combust. Flame, Vol. 108, pp. 71–86, 1997.CrossRefGoogle Scholar
  5. 5.
    A. Kronenburg, R. W. Bilger and J. H. Kent, “Modeling soot formation in turbulent methane-air jet diffusion flames”, Combust Flame, Vol. 121, pp. 24–40, 2000.CrossRefGoogle Scholar
  6. 6.
    R. M. Woolley, M. Fairweather and Yunardi, “Conditional moment closure modelling of soot formation in turbulent, non–premixed methane and propane flames”, Fuel, Vol. 88, pp. 393–407, 2009.CrossRefGoogle Scholar
  7. 7.
    H. El–Asrag, T. Lu, C. K. Law and S. Menon, “Simulation of soot formation in turbulent premixed flames”, Combust. Flame, Vol. 150, pp. 108–126, 2007.CrossRefGoogle Scholar
  8. 8.
    J. Nagle and R. F. Strickland–Constable, “Oxidation of carbon betwee. 1000–2000 °C”, in Pr. Fifth Carbon Conf., Pergamon, Oxford, Vol. 1, pp. 154–164, 1962.CrossRefGoogle Scholar
  9. 9.
    D. E. Jensen, “Prediction of soot formation rates: a new approach”, Proc. Roy. Soc. Lond. A, Vol. 338, pp. 375–396, 1974.CrossRefGoogle Scholar
  10. 10.
    S. J. Brookes and J. B. Moss, “Measurements of soot production and thermal radiation from confined turbulent jet diffusion flames”, Combust. Flame, Vol. 116, pp. 49–61, 1999.CrossRefGoogle Scholar
  11. 11.
    A. H. Lefebvre, Gas turbine combustion, 2nd ed., Taylor & Francis, New York, 1999.Google Scholar
  12. 12.
    O. Haidn, G. Ordonneau, S. Soller and M. Onofri, “Oxygen–methane combustion studies in the In Space Propulsion programme”, 4th EUCASS, St. Petersburg, Russia, 2011.Google Scholar
  13. 13.
    G. Hagemann, “LOX/Methane–The future is green”, presentation, Master course “Space transportation systems”, March 2016, Rome.Google Scholar
  14. 14.
    M. E. Mueller, G. Blanquart and H. Pitsch, “Modeling the oxidation–induced fragmentation of soot aggregates in laminar flames”, Proc. Combust. Inst., Vol. 33, pp. 667–674, 2011.CrossRefGoogle Scholar
  15. 15.
    W. P. Jones and J. H. Whitelaw, “Calculation methods for reacting turbulent flows: a review”, Combust. Flame, Vol. 48, pp. 1–26, 1982.CrossRefGoogle Scholar
  16. 16.
    D. C. Haworth, R. J. Blint, B. Cuenot and T.J. Poinsot, “Numerical simulation of turbulent propane–air combustion with nonhomogeneous reactants”, Combust. Flame, Vol. 121, pp. 395–417, 2000.CrossRefGoogle Scholar
  17. 17.
    S. K. Liew, K. N. C. Bray and J. B. Moss, “A stretched laminar flamelet model of turbulent nonpremixed combustion”, Combust. Flame, Vol. 56, pp. 199–213, 1984.CrossRefGoogle Scholar
  18. 18.
    N. Peters, “Laminar diffusion flamelet models in non–premixed turbulent combustion”, Progr. Energy Combust. Sci., Vol. 10, pp. 319–334, 1984.CrossRefGoogle Scholar
  19. 19.
    N. Peters, “Laminar flamelet concepts in turbulent combustion”, Proc. Combust. Inst., Vol. 21, pp. 1231–1250, 1986.CrossRefGoogle Scholar
  20. 20.
    N. Peters, Turbulent combustion, Cambridge Univ. Press, Cambridge, 2000.CrossRefGoogle Scholar
  21. 21.
    C. M. Mazzoni, “Modelling of thermal radiation and soot emissions in aerospace applications”, Ph.D. thesis, DIMA, Sapienza Università di Roma, 2012.Google Scholar
  22. 22.
    K. N. C. Bray and N. Peters, “Laminar flamelets in turbulent flames”, in P. A. Libby and F. A. Williams (Eds.), Turbulent reacting flows, Academic Press, London, pp. 7884, 1994.Google Scholar
  23. 23.
    B. Marracino and D. Lentini, “Radiation modelling in non–luminous nonpremixed turbulent flames”, Combust. Sci. Tech., Vol. 128, pp. 23–48, 1997CrossRefGoogle Scholar
  24. 24.
    P. Giordano and D. Lentini, “Combustion–radiation–turbulence interaction modelling in absorbing/emitting nonpremixed flames”, Combust. Sci. Tech., Vol. 172, pp. 1–22, 2001.CrossRefGoogle Scholar
  25. 25.
    A. Favre, “Equations des gaz turbulents compressibles”, J. Mécanique, Vol. 4, pp. 361–421, 1965.Google Scholar
  26. 26.
    D. Lentini, “Assessment of the stretched laminar flamelet approach for nonpremixed turbulent combustion”, Combust. Sci. Tech., Vol. 100, pp. 95–122, 1994.CrossRefGoogle Scholar
  27. 27.
    R. W. Bilger, “Turbulent diffusion flames”, Ann. Rev. Fluid Mech, Vol. 21, pp. 101–135, 1989.MathSciNetCrossRefGoogle Scholar
  28. 28.
    J. M. Richardson, H. C. Howard and R. W. Smith, “The relation between sampling-tube measurements and concentration fluctuations in a turbulent gas jet”, Proc. Combust. Inst., Vol. 4, pp. 814–817, 1953.CrossRefGoogle Scholar
  29. 29.
    A. N. Kolmogorov, “A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number”, J. Fluid Mech., Vol. 13, pp. 82–85, 1962.MathSciNetCrossRefGoogle Scholar
  30. 30.
    A. Sette, Soot concentration measurements in nonpremixed turbulent flames based on thermophoretic effects on metal wires (in Italian), M.Sc. thesis, DIMA, Sapienza Università di Roma, 2014, website http://www.dima.uniroma1.it/STAFF2/Sette14.pdf, accessed 30 July 2016.Google Scholar
  31. 31.
    L. Lucci, Design and experimentation of a test rig for measuring particulate concentration in methane/air flames (in Italian), M.Sc. thesis, DIMA, Sapienza Università di Roma, 2015, website http://www.dima.uniroma1.it/STAFF2/Lucci15.pdf, accessed 30 July 2016.Google Scholar
  32. 32.
    A. E. Lutz, R. J. Kee, J. F. Grcar and F. M. Rupley, “Oppdif: a Fortran program for computing opposed–flow diffusion flames”, SANDIA, Rept. SAND96-8243, 1997.CrossRefGoogle Scholar
  33. 33.
    G. P. Smith, D. M. Golden, M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Jr Gardiner, V. V. Lissianski and Z. Qin, GRI–MECH 3.0, 2000.Google Scholar
  34. 34.
    N. A. Slavinskaya and P. Frank, “A modelling study of aromatic soot precursors formation in laminar methane and ethene flames”, Combust. Flame, Vol. 156, pp. 1705–1722, 2009.CrossRefGoogle Scholar
  35. 35.
    P. M. Patterson, A. G. Kyne, M. Pourkashanian, A. Williams and C. W. Wilson, “Combustion of kerosene in counterflow diffusion flames”, J. Prop. P., Vol. 17, pp. 453460, 2001.Google Scholar

Copyright information

© AIDAA Associazione Italiana di Aeronautica e Astronautica 2016

Authors and Affiliations

  • F. Bonifazi
    • 1
  • D. Lentini
    • 2
  1. 1.OMA S.p.AFolignoItaly
  2. 2.Dipartimento di Ingegneria Meccanica e AerospazialeSapienza Università di RomaItaly

Personalised recommendations