Aerotecnica Missili & Spazio

, Volume 93, Issue 3–4, pp 101–108 | Cite as

Multi-body Model Validation of a Landing Gear System for a General Aviation Aircraft

  • M. Esposito
  • M. Barile
  • A. De Fenza
  • R. Di Leo
  • L. Lecce


The present work is aimed to numerically validate the experimental drop test results, related to the landing gear of a general aviation aircraft, in order to define an appropriate simulation methodology able to save time, costs and risks due to structural design and experimental test campaign required in the certification phase. The aircraft selected for this research activity is the AP-68TP-300 Spartacus, an Italian nine-seat, twin-engined, high wing monoplane, realized by Vulcanair S.p.a.. The multi-body approach has been developed through the MSC Adams software, starting from a simplified 1D model up to a more detailed 3D one. The comparison between numerical and experimental results in terms of load factors has been carried out in accordance with CS-23 (Certification Specifications for Normal, Utility, Aerobatic and Commuter Aeroplanes), and it has shown a good correlation, especially for the 3D model, since it better fits the real behaviour of the entire system.


Landing Gear Drop Test Multi-body Systems MSC Adams 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Pascale, L. Lecce, G. Verde, “Studio Teorico-Sperimentale sul comportamento dinamico del carrello a balestra di un velivolo biturbina dell’aviazione generale”, Istituto di Progetto di velivoli, Università degli Studi di Napoli, Federico II, 1981.Google Scholar
  2. 2.
    14 Code of Federal Regulation §23.725 Amdt. 6.Google Scholar
  3. 3.
    14 Code of Federal Regulation §23.727 Amdt. 6.Google Scholar
  4. 4.
    M. Raymond, R. Mattehew, “Tire models for Vehicle Dynamic Simulation and Accident Reconstruction”, AE Technical Paper 2009-01-0102, 2009Google Scholar
  5. 5.
    G.A. Doyle, “A Review of Computer Simulations for Aircraft-surface Dynamics” Journal of Aircraft, Vol. 23 (4), 1986.Google Scholar
  6. 6.
    T. Catt, D. Cowling and A. Shepherd, “Active Landing Gear Control for Improved Ride Quality during Ground Roll. Smart Structures for Aircraft and Spacecraft (AGARD CP 531)”. Stirling Dynamics Ltd., Bristol, 1993.Google Scholar
  7. 7.
    A.G. Barnes, T.Y. Yager, “Simulation of Aircraft Behavior On and Close To the Ground”, AGARDOgraph AG333, 1998.Google Scholar
  8. 8.
    H.P.Y. Hitch, “Aircraft Ground Dynamics”, Vehicle System Dynamics. 10, pp. 319–332, 1981.CrossRefGoogle Scholar
  9. 9.
    W.R. Krüger et al., “Aircraft Landing Gear Dynamics: Simulation and Control”, Vehicle System Dynamics, Vol. 28, pp. 257–289, 1997.CrossRefGoogle Scholar
  10. 10.
    J. Pritchard, “An Overview of Landing Gear Dynamics”, NASA Langley R. C.,/TM-1999-209143, ARL-TR-1976, May 1999.Google Scholar
  11. 11.
    B. v. Schlippe, R. Dietrich, “Das Flattern des pneumatischen Rades”, Lilienthal Gesellschaft \(f{\rm{\~A}}\frac{1}{4}r\)fσ14r Luftfahrtforschung, 1941.Google Scholar
  12. 12.
    H.B. Pacejka (ed.), “Tire Models for Vehicle Dynamics Analysis”, 1st International Colloquium on Tire Models for Vehicle Dynamics Analysis. Swets & Zeitlinger, 1991.Google Scholar
  13. 13.
    E. Bakker, L. Nyborg, H.B. Pacejka, “A New Tyre Model With an Application in Vehicle Dynamics Studies”, SAE 890087, 1989.Google Scholar
  14. 14.
    H.B. Pacejka and I.J.M. Besselink, “Magic Formula Tyre Model with Transient Properties”, Vehicle System Dynamics Supplement 27, pp. 234–249, 1997.Google Scholar
  15. 15.
    T. Rook, S. Kumar, “Dynamic Aircraft Landing Gear Simulation Using Flexible Multibody Dynamics Methods in Adams to Guide Component Design and Testing”. ADAMS User Conference, June 2010.Google Scholar
  16. 16.
    V. Giordano, “Il progetto del carrello a balestra degli aeroplani leggeri”, Istituto di Progetto di velivoli, Universitdegli Studi di Napoli, Federico II.Google Scholar
  17. 17.
    V. Giordano, “Sulla sperimentazione dei carrelli d’atterraggio a balestra”, Istituto di Progetto di velivoli, Universitdegli Studi di Napoli, Federico II.Google Scholar
  18. 18.
    The Goodyear Tire & Rubber, “Aircraft Tire Data Book-10/02”.Google Scholar
  19. 19.
    Pacajka Hans, “Tire and vehicle Dynamics”, SAE, Warendale, PA, 2002.Google Scholar
  20. 20.
    Tonuk E., Unlusoy Y. S., “Prediction of automobile tire cornering force characteristics by finite element modeling and analysis”, Computers and Structures, 9, 2001, pp 1219–1232.CrossRefGoogle Scholar

Copyright information

© AIDAA Associazione Italiana di Aeronautica e Astronautica 2014

Authors and Affiliations

  • M. Esposito
    • 1
  • M. Barile
    • 2
  • A. De Fenza
    • 2
  • R. Di Leo
    • 2
  • L. Lecce
    • 2
  1. 1.Novotech S.r.l. Advanced Aerospace TechnologyNapoliItaly
  2. 2.Department of Industrial Engineering (Aerospace Division)University of Naples Federico IIItaly

Personalised recommendations