Canadian Journal of Public Health

, Volume 89, Issue 3, pp 152–156 | Cite as

The Effect of the Urban Ambient Air Pollution Mix on Daily Mortality Rates in 11 Canadian Cities

  • Richard T. BurnettEmail author
  • Sabit Cakmak
  • Jeffrey R. Brook


Objective: Determine the risk of premature mortality due to the urban ambient air pollution mix in Canada.

Methods: The number of daily deaths for non-accidental causes were obtained in 11 cities from 1980 to 1991 and linked to concentrations of ambient gaseous air pollutants using relative risk regression models for longitudinal count data.

Results: Nitrogen dioxide had the largest effect on mortality with a 4.1% increased risk (p<0.01), followed by ozone at 1.8% (p<0.01), sulphur dioxide at 1.4% (p<0.01), and carbon monoxide at 0.9% (p=0.04) in multiple pollutant regression models. A 4% reduction in premature mortality was attributed to achieving a sulphur content of gasoline of 30 ppm in five Canadian cities, a risk reduction 12 times greater than previously reported.

Conclusions: Ambient air pollution generated from the burning of fossil fuels is a risk factor for premature mortality in 11 Canadian cities.


Objectif: Évaluer le risque de décès prématuré dû aux divers polluants atmosphériques dans les villes au Canada.

Méthodes: On a déterminé le nombre quotidien de décès non accidentels dans 11 villes entre 1980 et 1991 et établi un lien entre les concentrations de polluants gazeux dans l’atmosphère au moyen de modèles de régression du risque relatif pour des données longitudinales.

Résultats: Le dioxyde d’azote avait l’influence la plus marquée sur la mortalité, se traduisant par une majoration du risque de l’ordre de 4,1 % (p<0,01); venaient ensuite l’ozone, 1,8% (p<0,01), l’anhydride sulfureux, 1,4% (p<0,01) et le monoxyde de carbone, 0,9% (p=0,04), dans des modèles de régression portant sur plusieurs polluants. Dans cinq villes canadiennes, une réduction des décès prématurés de l’ordre de 0,4% a été attribuée par obtenu une teneur en soufre d’essence de 30 mg/L, l’importance du risque étant 12 fois plus élevée que ce qu’on avait signalé auparavant.

Conclusions: La pollution atmosphérique engendrée par la combustion des carburants fossiles est un facteur de risque de décès prématuré dans les villes canadiennes.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lipfert, FW. Air Pollution and Community Health. New York: Van Nostrand Reinhold, 1994.Google Scholar
  2. 2.
    Federal-Provincial Committee on Air Pollution, 1976. Criteria for National Air Quality Objectives: Sulphur Dioxide, Suspended Particulates, Carbon Monoxide, Oxidants (ozone) and Nitrogen Dioxide. Reports to the Federal-Provincial Committee on Air Pollution (1971 and 1973) by the Subcommittee on Air Quality Objectives, November 1976. 41pp.Google Scholar
  3. 3.
    Furmancyzk T. National Urban Air Quality Trends, 1974–1983. Environment Canada, Environmental Protection Series Report, No. EPS 7/UP/1, October, 1986. Inquiry Centre, Environment Canada.Google Scholar
  4. 4.
    United States Environmental Protection Agency. Air Quality Criteria for Particulate Matter. Office of Research and Development, Washington, DC EPA/600/P-95/001bf, April 1996.Google Scholar
  5. 5.
    The Acidifying Emissions Task Group. Towards a National Acid Rain Strategy, Environment Canada, Ottawa, October 1997. Inquiry Centre, Environment Canada.Google Scholar
  6. 6.
    Joint Industry/Government Study. Sulphur in Gasoline and Diesel Fuels. Ottawa, August 1997. Inquiry Centre, Environment Canada.Google Scholar
  7. 7.
    United States Environmental Protection Agency. The Benefits and Costs of the Clean Air Act, 1970 to 1990. Prepared for the United States Congress, 1996.Google Scholar
  8. 8.
    Chestnut, LG. Human Health Benefits from Sulfate Reductions Under Title IV of the 1990 Clean Air Act Amendments. Report to the Office of Air and Radiation, Office of Atmospheric Programs, Acid Rain Division, United States Environmental Protection Agency, Washington, DC, 1995.Google Scholar
  9. 9.
    Cleveland WS, Devlin, SJ. Robust locally-weighted regression and smoothing scatterplots. J Am Statist Assoc 1988;74:829–36.CrossRefGoogle Scholar
  10. 10.
    Statistical Sciences, Inc. S-Plus Users Manual, Seattle, WA: Statistical Sciences Inc., 1993.Google Scholar
  11. 11.
    Atmospheric Assessment Panel Report, Joint Industry/Government Study. Sulphur in Gasoline and Diesel Fuels. Ottawa, August 1997. Inquiry Centre, Environment Canada.Google Scholar
  12. 12.
    Health and Economics Assessment Panel Report, Joint Industry/Government Study. Sulphur in Gasoline and Diesel Fuels. Ottawa, August 1997. Inquiry Centre, Environment Canada.Google Scholar
  13. 13.
    Schwartz J, Dockery DW, Neas, LM. Is daily mortality associated specifically with fine particles? J Air & Waste Manage Assoc 1996;46:927–39.CrossRefGoogle Scholar
  14. 14.
    Burnett RT, Cakmak S, Brook JR, et, al. The role of particulate size and chemistry in the association between summertime ambient air pollution and hospitalizations for cardiorespiratory diseases. Environ Health Perspect 1997;105:614–20.CrossRefGoogle Scholar
  15. 15.
    Burnett RT, Brook JR, Cakmak S, et, al. The association between ambient carbon monoxide levels and daily mortality in Toronto, Canada. J Air & Waste Manage Assoc 1998 (In press).Google Scholar
  16. 16.
    Brook JR, Dann TF, Burnett, RT. The relationship among TSP, PM10, PM2,5, and inorganic constituents of atmospheric particulate matter at multiple Canadian locations. J Air & Waste Manage Assoc 1997;47:2–19.CrossRefGoogle Scholar

Copyright information

© The Canadian Public Health Association 1998

Authors and Affiliations

  • Richard T. Burnett
    • 1
    Email author
  • Sabit Cakmak
    • 1
  • Jeffrey R. Brook
    • 2
  1. 1.Environmental Health Directorate, Health CanadaOttawaCanada
  2. 2.Atmospheric Environment ServiceEnvironmentCanada

Personalised recommendations