Canadian Journal of Public Health

, Volume 95, Issue 6, pp 465–469 | Cite as

Age Differences in Vitamin A Intake Among Canadian Inuit

  • Grace M. EgelandEmail author
  • Peter Berti
  • Rula Soueida
  • Laura T. Arbour
  • Olivier Receveur
  • Harriet V. Kuhnlein



Inuit traditional food provides ample amounts of preformed vitamin A. However, the dietary transition away from traditional food raises concerns regarding dietary adequacy. Vitamin A is an essential nutrient with inadequate and excessive exposures having adverse effects.


To evaluate total dietary vitamin A intake for Canadian Inuit from market food and traditional food sources and to evaluate retinol concentrations in liver and blubber.


Dietary surveys were conducted in 18 communities representing 5 Inuit regions, and traditional food items were evaluated for nutrient content.


Among those 15–40 years of age, 68% of men and 60% of women had a dietary vitamin A intake below the estimated average requirement (EAR) for retinol activity equivalents (RAE)/day. Among those over 40 years of age, only 11% of men and 15% of women had a dietary vitamin A intake below the EAR. Young Inuit men had a relative risk of 6.2 (95% CI= 4.5–8.4), and young Inuit women had a relative risk of 4.0 (95% CI= 3.1–5.0) for dietary inadequacy compared to the older Inuit men and women, respectively. The median retinol content of liver of ringed seal, caribou, and fish were comparable to levels observed in market food liver. Liver was less frequently consumed by those 15–40 years of age than among older Inuit.


Sub-optimal vitamin A intake is the predominant nutritional concern rather than excessive exposures. Public health education campaigns are needed to improve vitamin A intake among the younger generations of Inuit men and women.



Contexte: L’alimentation traditionnelle des Inuits est très riche en vitamine A préformée, mais on craint que l’abandon progressif des aliments traditionnels entraîne des carences alimentaires. La vitamine A est un élément nutritif essentiel dont le déficit ou l’excédent peut avoir des effets indésirables.


Évaluer l’apport total en vitamine A provenant des sources de nourriture commerciales et traditionnelles dans l’alimentation des Inuits du Canada et évaluer les concentrations en rétinol dans le foie et le petit lard.


Nous avons administré des questionnaires sur l’alimentation dans 18 collectivités représentant 5 régions inuites et évalué le contenu d’aliments traditionnels en éléments nutritifs.


Chez les Inuits de 15 à 40 ans, 68 % des hommes et 60 % des femmes avaient un apport alimentaire en vitamine A inférieur au besoin moyen estimatif (BME) quotidien en équivalents rétinol (ER). Chez les plus de 40 ans, par contre, seulement 11 % des hommes et 15 % des femmes avaient un apport alimentaire en vitamine A inférieur au BME. Les jeunes hommes présentaient un risque relatif de carence alimentaire de 6,2 (IC de 95 %=4,5–8,4), et les jeunes femmes, un risque relatif de 4,0 (IC de 95 %= 3,1–5,0), respectivement, par rapport aux hommes et aux femmes plus âgés. Nous avons comparé la teneur médiane en rétinol dans des foies de phoque annelé, de caribou et de poisson et dans des foies vendus dans le commerce. Les Inuits de 15 à 40 ans consommaient moins souvent du foie que leurs aînés.


Un apport sous-optimal en vitamine A préoccupe davantage les diététiciens qu’un apport excessif. Il faudrait mener des campagnes de sensibilisation du public afin d’améliorer l’apport en vitamine A chez les jeunes générations d’Inuits.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Semba RD. The role of vitamin A and related retinoids in immune function. Nutr Rev 1998;56(Suppl):38–48.CrossRefGoogle Scholar
  2. 2.
    Azais-Braesco V, Pascal G. Vitamin A in pregnancy: Requirements and safety limits. Am J Clin Nutr 2000;71(Suppl):1325–33.CrossRefGoogle Scholar
  3. 3.
    Zile MH. Vitamin A and embryonic development: An overview. J Nutr 1998;128(Suppl):455–58.CrossRefGoogle Scholar
  4. 4.
    Ross SA, McCaffery PJ, Drager UC, Luca LM. Retinoids in embryonal development. Physiol Rev 2000;80(3):1021–54.CrossRefGoogle Scholar
  5. 5.
    Sommer A. Vitamin A: Its effect on childhood sight and life. Nutr Rev 1994;52(2)Suppl:60–66.CrossRefGoogle Scholar
  6. 6.
    Institute of Medicine (US). Vitamin A. In: Dietary Reference Intakes. Washington: National Academy Press, 2000;82–161.Google Scholar
  7. 7.
    Kuhnlein HV, Receveur O, Chan HM. Traditional food systems research with Canadian indigenous peoples. Int J Circumpolar Health 2001;60:112–22.Google Scholar
  8. 8.
    Kuhnlein HV. Nutrition of the Inuit: A brief overview. Arctic Med Res 1991;Suppl:728–30.Google Scholar
  9. 9.
    Lawn J, Langner N, Brule D, Thompson N, Lawn P, Hill F. Food consumption patterns of Inuit women. Int J Circumpolar Health 1998;57(Suppl 1):198–204.Google Scholar
  10. 10.
    Godel JC, Basu TK, Pabst HF, Hodges RS, Hodges PE, Ng ML. Perinatal vitamin A (retinol) status of northern Canadian mothers and their infants. Biol Neonate 1996;65:133–39.CrossRefGoogle Scholar
  11. 11.
    Jenkins AL, Gyorkos TW, Culman KN, Ward BJ, Pekeles GS, Mills EL. An overview of factors influencing the health of Canadian Inuit infants. Int J Circumpolar Health 2003;62(1):17–39.CrossRefGoogle Scholar
  12. 12.
    Kuhnlein HV, Receveur O, Chan HM, Loring E. Assessment of Inuit Dietary Benefit/Risk in Inuit Communities. Project Report to DIAND, 2000.Google Scholar
  13. 13.
    Kuhnlein HV, Barthet V, Leggee D, Farren A. Vitamins A, E and D in traditional arctic food (submitted).Google Scholar
  14. 14.
    Kuhnlein HV, Receveur O, Soueida R, Egeland GM. Arctic indigenous peoples experience: The nutrition transition with changing dietary patterns and obesity. J Nutr 2004;124:1447–53.CrossRefGoogle Scholar
  15. 15.
    Receveur O, Boulay M, Kuhnlein HV. Decreasing traditional food use affects diet quality for adult Dene/Métis in 16 communities of the Canadian Northwest Territories. J Nutr 1997;127:2179–86.CrossRefGoogle Scholar
  16. 16.
    Institute Of Medicine. Applications in dietary assessment. In: Dietary Reference Intakes. Washington: National Academy Press, 2000.Google Scholar
  17. 17.
    Barr SI, Murphy SP, Poos MI. Interpreting and using the Dietary Reference Intakes in dietary assessment of individuals and groups. J Am Diet Assoc 2002;102(6):780–88.CrossRefGoogle Scholar
  18. 18.
    Murphy SP. Changes in dietary guidance: Implications for food and nutrient databases. J Food Composition Analysis 2001;14:269–78.CrossRefGoogle Scholar
  19. 19.
    Holden JM, Eldridge AL, Beecher GR, Buzzard IM, Bhagwat S, Davis CS, et al. Carotenoid content of U.S. foods: An update of the database. J Food Composition Analysis 1999;12:169–96.CrossRefGoogle Scholar
  20. 20.
    Murphy SP, Gross KR. The UCB Mini-list Diet Analysis System. MS_DOS Version Users Guide. The Regents of the University of California; Revised 1987 Jun.Google Scholar
  21. 21.
    Dubuc MB, Lahaie LC. Nutritive Value of Foods. Société Brault-Lahaie, 1994.Google Scholar
  22. 22.
    Morrison N, Kuhnlein HV. Retinol content of wild foods consumed by the Sahtu (Hareskin) Dene/Metis. J Food Composition Analysis 1993;6:10–23.CrossRefGoogle Scholar
  23. 23.
    Iowa State University Statistical Laboratory. Software for Intake Distribution Estimation (SIDE). A User’s Guide to SIDE. Version 1. Technical Report 96-TR 30. Department of Statistics and Center for Agricultural and Rural Development, Iowa State University, 1996.Google Scholar
  24. 24.
    U.S. Department of Agriculture, Agricultural Research Service. 2002. USDA National Nutrient Database for Standard Reference, Release 15. Nutrient Data Laboratory Home Page,
  25. 25.
    Helms P. Kostvurderingstabeller. Kopenhagen: Akademisk Forlag, 1980.Google Scholar
  26. 26.
    Rohde CM, Manatt M, Clagett-Dame M, DeLuca HF. Vitamin A antagonizes the action of vitamin D in rats. J Nutr 1999;129:2246–50.CrossRefGoogle Scholar
  27. 27.
    Freudenheim JL, Johnson NE, Smith EL. Relationship between usual nutrient intake and bone-mineral content of women 35–65 years of age: Longitudinal and cross-sectional analysis. Am J Clin Nutr 1986;44:863–76.CrossRefGoogle Scholar
  28. 28.
    Houtkooper LB, Ritenbaugh C, Aicken M, Lohman TG, Going SB, Weber JL, et al. Nutrients, body composition and exercise are related to change in bone mineral density in premenopausal women. J Nutr 1995;125:1229–37.Google Scholar
  29. 29.
    Melhus H, Michaelsson K, Kindmark A, Bergstrom R, Holmberg L, Mallmin H, et al. Excessive dietary intake of vitamin A is associated with reduced bone mineral density and increased risk for hip fractures. Ann Intern Med 1998;129:770–78.CrossRefGoogle Scholar
  30. 30.
    CDC. Prevalence and characteristics of alcohol consumption and fetal alcohol syndrome awareness — Alaska, 1991 and 1993. MMWR 1994;43(1):3–6.Google Scholar
  31. 31.
    Santé Quebec. Use of tobacco, alcohol and illicit drugs. In: A health profile of the Inuit: report of the Santé Québec Health Survey among the Inuit of Nunavik, 1992;121.Google Scholar
  32. 32.
    Leo MA, Lieber CS. Hepatic vitamin A depletion in alcoholic liver injury. N Engl J Med 1982;307:597–601.CrossRefGoogle Scholar
  33. 33.
    Leo MA, Lieber CS. Alcohol, vitamin A, and beta-carotene: Adverse interactions, including hepatotoxicity and carcinogenicity. Am J Clin Nutr 1999;69:1071–85.CrossRefGoogle Scholar
  34. 34.
    Sato M, Lieber CS. Hepatic vitamin A depletion after chronic ethanol consumption in baboons andrats. J Nutr 1981;111:2015–23.CrossRefGoogle Scholar
  35. 35.
    Whitby KE, Collins TFX, Welsh JJ, Black TN, Flynn T, Shackelford M, et al. Developmental effects of combined exposure to ethanol and vitamin A. Food Chem Toxicol 1994;32:305–20.CrossRefGoogle Scholar
  36. 36.
    Duester G. A hypothetical mechanism for fetal alcohol syndrome involving ethanol inhibition of retinoic acid synthesis at the alcohol dehydrogenase step. Alcohol Clin Exp Res 1991;15(3):568–72.CrossRefGoogle Scholar
  37. 37.
    Pullarkat RK, Azar B. Retinoic acid, embryonic development, and alcohol-induced birth defects. Embryonic Development 1992;16(4):317–23.Google Scholar
  38. 38.
    Zachman RD, Grummer MA. The interaction of ethanol and vitamin A as a potential mechanism for the pathogenesis of fetal alcohol syndrome. Alcohol Clin Exp Res 1998;22(7):1544–56.CrossRefGoogle Scholar
  39. 39.
    Halsted CH, Villanueva JA, Devlin AM, Chandler CJ. Metabolic interactions of alcohol and folate. J Nutr 2002;132(Suppl):2367–72.CrossRefGoogle Scholar
  40. 40.
    Arbour L, Gilpin C, Millor-Roy V, Pekeles G, Egeland GM, Hodgins S, Eydoux P. Congenital heart defects and other malformations in the Inuk of Baffin Island and Arctic Quebec between 1989 and 1994 (In press).Google Scholar
  41. 41.
    Egeland GM, Perham-Hester KA, Hook EB. Use of capture-recapture analyses in fetal alcohol syndrome surveillance in Alaska. Am J Epidemiol 1995;141:335–41.CrossRefGoogle Scholar
  42. 42.
    Egeland GM, Perham-Hester KA, Gessner BD, Ingle D, Berner JE, Middaugh JP. Fetal alcohol syndrome in Alaska, 1977 through 1992: An administrative prevalence derived from multiple data sources. Am J Public Health 1998;88:781–86.CrossRefGoogle Scholar
  43. 43.
    Willows ND, Dewailly E, Gray-Donald K. Anemia and iron status in Inuit infants from northern Quebec. Can J Public Health 2000;91:407–10.Google Scholar
  44. 44.
    Hodgins S, Dewailly E, Chatwood S, Bruneau S, Bernier F. Iron-deficiency anemia in Nunavit pregnancy and infancy. Int J Circumpolar Health 1998;57(Suppl 1):135–40.Google Scholar
  45. 45.
    Suharno D, West CE, Muhilal Karvadi D, Hautvast JGAJ. Supplementation with vitamin A and iron for nutritional anaemia in pregnant women in West Java, Indonesia. Lancet 1993;342:1325–28.CrossRefGoogle Scholar
  46. 46.
    Oakley GP, Erickson JD. Vitamin A and birth defects: Continuing caution is needed. N Engl J 1995;333(21):1414–15.CrossRefGoogle Scholar

Copyright information

© The Canadian Public Health Association 2004

Authors and Affiliations

  • Grace M. Egeland
    • 1
    Email author
  • Peter Berti
    • 2
  • Rula Soueida
    • 1
  • Laura T. Arbour
    • 4
  • Olivier Receveur
    • 3
  • Harriet V. Kuhnlein
    • 1
  1. 1.Centre for Indigenous Peoples’ Nutrition and Environment (CINE) and School of Dietetics and Human NutritionMcGill UniversityCanada
  2. 2.PATHTorontoCanada
  3. 3.Department of NutritionUniversity of MontrealMontrealCanada
  4. 4.Children’s and Women’s Health Centre of BCUniversity of British ColumbiaVancouverCanada

Personalised recommendations