Advertisement

Canadian Journal of Public Health

, Volume 103, Supplement 3, pp S61–S66 | Cite as

Creating Neighbourhood Groupings Based on Built Environment Features to Facilitate Health Promotion Activities

  • Donald Schopflocher
  • Eric VanSpronsen
  • John C. Spence
  • Helen Vallianatos
  • Kim D. Raine
  • Ronald C. Plotnikoff
  • Candace I. J. Nykiforuk
Quantitative Research

Abstract

Objectives

Detailed assessments of the built environment often resist data reduction and summarization. This project sought to develop a method of reducing built environment data to an extent that they can be effectively communicated to researchers and community stakeholders. We aim to help in an understanding of how these data can be used to create neighbourhood groupings based on built environment characteristics and how the process of discussing these neighbourhoods with community stakeholders can result in the development of community-informed health promotion interventions.

Methods

We used the Irvine Minnesota Inventory (IMI) to assess 296 segments of a semi-rural community in Alberta. Expert raters "created" neighbourhoods by examining the data. Then, a consensus grouping was developed using cluster analysis, and the number of IMI variables to characterize the neighbourhoods was reduced by multiple discriminant function analysis.

Results

The 296 segments were reduced to a consensus set of 10 neighbourhoods, which could be separated from each other by 9 functions constructed from 24 IMI variables. Biplots of these functions were an effective means of summarizing and presenting the results of the community assessment, and stimulated community action.

Conclusions

It is possible to use principled quantitative methods to reduce large amounts of information about the built environment into meaningful summaries. These summaries, or built environment neighbourhoods, were useful in catalyzing action with community stakeholders and led to the development of health-promoting built environment interventions.

Key words

Built environment quantitative methods health promotion knowledge exchange obesity reduction 

Mots clés

milieu bâti méthodes quantitatives promotion de la santé échange des connaissances réduction de l’obésité 

Résumé

Objectifs

Les évaluations approfondies du milieu bâti résistent souvent aux tentatives de réduction et de synthèse des données. Nous avons cherché à élaborer une méthode de réduction des données sur le milieu bâti qui permette de communiquer efficacement ces données aux chercheurs et aux acteurs locaux. Notre objectif est de faire comprendre comment on peut utiliser ces données pour créer des regroupements de quartiers fondés sur les caractéristiques du milieu bâti, et que le processus de discussion des quartiers avec les acteurs locaux peut entraîner la mise au point d’interventions de promotion de la santé renforcées par un apport communautaire.

Méthode

À l’aide de la liste de critères Irvine-Minnesota Inventory (IMI), nous avons évalué 296 segments d’une communauté semi-rurale de l’Alberta. Des évaluateurs experts ont «créé» des quartiers en examinant les données. Ensuite, nous avons élaboré un regroupement consensuel au moyen d’une analyse en grappes, et réduit le nombre de variables IMI caractérisant les quartiers au moyen d’une analyse discriminante multiple.

Résultats

Les 296 segments ont été réduits par consensus à un ensemble de 10 quartiers, lesquels se distinguent les uns des autres selon 9 fonctions construites à partir de 24 variables IMI. Des biplots de ces fonctions ont été un moyen efficace de résumer et de présenter les résultats de l’évaluation communautaire, et ont stimulé l’action communautaire.

Conclusions

Il est possible d’utiliser des méthodes quantitatives raisonnées pour réduire de grandes quantités d’information sur le milieu bâti en résumés signifiants. Ces résumés, ou «quartiers selon le milieu bâti», ont été utiles pour catalyser des actions avec les acteurs locaux et ont mené à l’élaboration d’interventions sur le milieu bâti favorisant la santé.

References

  1. 1.
    World Health Organization. Global Status Report on Noncommunicable Diseases 2010. Description of the Global Burden of NCDs, Their Risk Factors and Determinants, 2011. Available at: https://doi.org/www.who.int/nmh/publications/ncd_report2010/en/index.html (Accessed December 21, 2011).
  2. 2.
    Waters E, de Silva-Sanigorski A, Hall BJ, Brown T, Campbell KJ, Gao Y, et al. Interventions for preventing obesity in children. Cochrane Database Syst Rev 2011;12.Google Scholar
  3. 3.
    Wall M, Hayes R, Moore D, Petticrew M, Clow A, Schmidt E, et al. Evaluation of community level interventions to address social and structural determinants of health: A cluster randomised controlled trial. BMC Public Health 2009;28(9):207–17.CrossRefGoogle Scholar
  4. 4.
    Raine K, Spence JC, Church J, Boulé N, Slater L, Marko J, et al. State of the Evidence Review on Urban Health and Healthy Weights. Ottawa, ON: Canadian Institute for Health Information, 2008.Google Scholar
  5. 5.
    Egger G, Swinburn B. An ecological approach to the obesity pandemic. BMJ 1997;315:477–80.CrossRefGoogle Scholar
  6. 6.
    Swinburn B, Egger G. Preventive strategies against weight gain and obesity. Obes Rev 2002;3:289–301.CrossRefGoogle Scholar
  7. 7.
    Booth KM, Pinkston MM, Carlos Poston WS. Obesity and the built environment. J Am Diet Assoc 2005;105(5 Suppl 1):S110–17.CrossRefGoogle Scholar
  8. 8.
    Cummins S, Macintyre S. Food environments and obesity–Neighborhood or nation? Int J Epidemiol 2006;35(1):100–4.CrossRefGoogle Scholar
  9. 9.
    Kumanyika SK, Obarzanek E, Stettler N, Bell R, Field AE, Fortmann SP, et al. Population-based prevention of obesity: The need for comprehensive promotion of healthful eating, physical activity, and energy balance. A scientific statement from American Heart Association Council on Epidemiology and Prevention, Interdisciplinary Committee for Prevention (formerly the expert panel on population and prevention science). Circulation 2008;118(4):428–64.CrossRefGoogle Scholar
  10. 10.
    Duncan MJ, Spence JC, Memmery WK. Perceived environment and physical activity: A meta-analysis of selected environmental characteristics. Int J Behav Nutr Phys Act 2005;2:11–20.CrossRefGoogle Scholar
  11. 11.
    Spence JC, Plotnikoff RC, Rovniak LS, Martin Ginis KA, Rodgers W, Lear SA. Perceived neighbourhood correlates of walking among participants visiting the Canada On the Move website. Can J Public Health 2006;97(Suppl 1):S36–40.PubMedGoogle Scholar
  12. 12.
    Frank LD, Schmid TL, Sallis JF, Chapman J, Saelens BE. Linking objectively measured physical activity with objectively measured urban form: Findings trom SMARTRAQ. Am J Prev Med 2005;28(2 Suppl 2):117–25.CrossRefGoogle Scholar
  13. 13.
    Hoehner CM, Brennan Ramirez LK, Elliott MB, Handy SL, Brownson RC. Perceived and objective environmental measures and physical activity among urban adults. Am J Prev Med 2005;8(2 Suppl 2):105–16.CrossRefGoogle Scholar
  14. 14.
    The Ottawa Charter for Health Promotion. Ottawa: Health and Welfare Canada, 1986. Available at: https://doi.org/www.who.int/healthpromotion/conferences/previous/ottawa/en/print.html (Accessed December 21, 2011).
  15. 15.
    Brownson RC, Hoehner CM, Day K, Forsyth A, Sallis JF. Measuring the built environment for physical activity: State of the science. Am J Prev Med 2009;36(Suppl 4):S99–123.CrossRefGoogle Scholar
  16. 16.
    Lytle LA. Measuring the food environment: State of the science. Am J Prev Med 2009;36(Suppl 4):S134–44.CrossRefGoogle Scholar
  17. 17.
    Day K, Boarnet M, Alfonzo M, Forsyth A. The Irvine-Minnesota Inventory to measure built environments: Development. Am J Prev Med 2006;30(2):144–52.CrossRefGoogle Scholar
  18. 18.
    Nykiforuk CIJ, Schopflocher D, Vallianatos H, Spence JC, Raine KD, Plotnikoff RC, et al. Community Health and the Built Environment: Examining place in a Canadian chronic disease prevention project. Health Promot Int 2012; first published online January 6, 2012 doi:10.1093/heapro/dar093.Google Scholar
  19. 19.
    Israel BA, Schulz AJ, Parker EA, Becker AB. Review of community-based research: Assessing partnership approaches to improve public health. Annu Rev Public Health 1998;19:173–202.CrossRefGoogle Scholar
  20. 20.
    Moffatt L. Chronic Disease Prevention Alliance of Canada. Knowledge Exchange in Health Promotion: Theoretical Models and Examples. Ottawa, ON: Chronic Disease Prevention Alliance of Canada, 2007. Available at: https://doi.org/www.cdpac.ca/media.php?mID=274 (Accessed December 21, 2011).Google Scholar
  21. 21.
    Town of Bonnyville. Bonnyville in Profile. Available at: https://doi.org/www.town.bonnyville.ab.ca/index.php/living-in-bonnyville/about-bonnyville/bonnyville-in-profile (Accessed December 21, 2011).Google Scholar
  22. 22.
    Rosenberg S, Kim MK. The method of sorting as a data-gathering procedure in multivariate research. Multivariate Behav Res 1975;10(4):489–502.CrossRefGoogle Scholar
  23. 23.
    Ward JH. Hierarchical grouping to optimize an objective function. J Am Stat Assoc 1963;580:236–44.CrossRefGoogle Scholar
  24. 24.
    Izenman AJ. Modern Multivariate Statistical Techniques: Regression, Classification, and Manifold Learning. New York: Springer, 2008.CrossRefGoogle Scholar
  25. 25.
    ter Braak CJF. Interpreting canonical correlation analysis through biplots of structure correlations and weights. Psychometrika 1990;55(3):519–31.CrossRefGoogle Scholar
  26. 26.
    Boone-Heinonen J, Popkin BM, Song Y, Gordon-Larsen P. What neighborhood area captures built environment features related to adolescent physical activity? Health Place 2010;16(6):1280–86.CrossRefGoogle Scholar
  27. 27.
    Oliver L, Schuurman N, Hall A, Hayes M. Assessing the influence of the built environment on physical activity for utility and recreation in suburban Metro Vancouver. BMC Public Health 2011;11(1):959.CrossRefGoogle Scholar
  28. 28.
    Hoehner CM, Handy SL, Yan Y, Blair SN, Berrigan D. Association between neighborhood walkability, cardiorespiratory fitness and body-mass index. Soc Sci Med 2011;73(12):1707–16.CrossRefGoogle Scholar
  29. 29.
    Keegan TH, Hurley S, Goldberg D, Nelson DO, Reynolds P, Bernstein L, et al. The association between neighborhood characteristics and body size and physical activity in the California Teachers Study cohort. Am j Public Health [published online ahead of print August 18, 2011].Google Scholar
  30. 30.
    McCreedy M, Leslie JG. Get Active Orlando: Changing the built environment to increase physical activity. Am J Prev Med 2009;37(6 Suppl 2):S395–402.CrossRefGoogle Scholar

Copyright information

© The Canadian Public Health Association 2012

Authors and Affiliations

  • Donald Schopflocher
    • 1
  • Eric VanSpronsen
    • 1
  • John C. Spence
    • 2
  • Helen Vallianatos
    • 3
  • Kim D. Raine
    • 1
  • Ronald C. Plotnikoff
    • 4
  • Candace I. J. Nykiforuk
    • 1
  1. 1.Centre for Health Promotion Studies, School of Public HealthUniversity of AlbertaEdmontonCanada
  2. 2.Faculty of Physical Education and RecreationUniversity of AlbertaEdmontonCanada
  3. 3.Department of Anthropology, Faculty of ArtsUniversity of AlbertaEdmontonCanada
  4. 4.School of EducationUniversity of NewcastleAustralia

Personalised recommendations