Advertisement

Canadian Journal of Public Health

, Volume 99, Issue 4, pp 344–349 | Cite as

How Health Status Affects Progress and Performance in School

A Population-based Study
  • Randall R. FransooEmail author
  • Noralou P. Roos
  • Patricia J. Martens
  • Maureen Heaman
  • Benjamin Levin
  • Dan Chateau
Article
  • 1 Downloads

Abstract

Objective

To assess the effects of health status at birth and health status in the preschool years on educational outcomes to age 9 in a population-based birth cohort.

Methods

Administrative data were used to follow all children born to Winnipeg mothers in 1990, and remaining in Manitoba until September 2004 (N=5,873). A structural equation model was used, incorporating latent variables to represent Health Status at Birth, Major Illness and Minor Illness during the preschool years. The model also included the child’s sex and exact age, along with a number of social, economic, and demographic characteristics of the child’s family. The outcome was a combination of marks on Grade 3 Standards Tests and enrolment in the appropriate grade for age.

Results

Major Illness in the preschool years had a significant influence on progress and performance in school (p=0.0003), predicting 1.26% of the variation in the outcome. Minor Illness was weaker but still significant (p<0.01). Health Status at Birth was not directly related to the outcome; its effect was mediated by Major and Minor Illness in childhood. Overall, the strongest predictors were the child’s age and the area-level income, followed by the mother’s age, family receipt of income assistance, the sex of the child, breastfeeding initiation (all p<0.0001), and Major Illness.

Conclusions

Health status plays a statistically significant but substantively small role in explaining progress and performance in school among a population-based cohort. Major Illness was more important than Minor Illness, and these two factors completely mediated the influence of Health Status at Birth on the outcome. The strength of the social, economic, and demographic variables underscores the importance of the broader factors that affect both health and educational outcomes.

Key words

Child health health status health services social determinants health policy 

Résumé

Objectif

Évaluer les effets de l’état de santé à la naissance et au cours des années préscolaires sur les résultats pédagogiques jusqu’à 9 ans au sein d’une cohorte de naissance représentative.

Méthode

À l’aide de données administratives, nous avons suivi tous les enfants nés de mères vivant à Winnipeg en 1990 et habitant encore au Manitoba en septembre 2004 (N=5 873). Nous avons utilisé un modèle d’équations structurelles incorporant des variables latentes pour représenter l’état de santé à la naissance, et les maladies graves et bénignes contractées durant les années préscolaires. Le modèle indiquait aussi le sexe et l’âge exact de l’enfant, ainsi que certaines caractéristiques sociales, économiques et démographiques de sa famille. Le résultat final était la combinaison des notes obtenues aux examens standardisés de la 3e année et de l’inscription dans une classe correspondant à l’âge de l’enfant.

Résultats

Les maladies graves contractées au cours des années préscolaires avaient une influence significative sur le cheminement et le rendement scolaires (p=0,0003), en prédisant 1,26 % de l’écart dans le résultat final. L’influence des maladies bénignes était plus faible, mais encore significative (p<0,01). L’état de santé à la naissance n’était pas directement lié au résultat; son effet était atténué par les maladies graves et bénignes durant l’enfance. Globalement, les prédicteurs les plus forts étaient l’âge de l’enfant et le revenu dans la région, suivis de l’âge de la mère, du fait que la famille touche une aide au revenu, du sexe de l’enfant, de l’allaitement maternel (tous ces facteurs, p<0,0001) et de l’existence d’une maladie grave.

Conclusion

L’état de santé jouait un rôle significatif, mais tout de même assez faible, dans le cheminement et le rendement scolaires au sein d’une cohorte représentative. L’effet des maladies graves était plus important que celui des maladies bénignes, et ces deux facteurs compensaient entièrement l’influence de l’état de santé à la naissance sur le résultat. La force des variables sociales, économiques et démographiques souligne l’importance des facteurs généraux qui touchent à la fois la santé et les résultats pédagogiques.

Mots clés

santé de l’enfant état de santé services de santé déterminants sociaux politiques de santé 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Powney J, Malcolm H, Lowden K. Health and Attainment: A Brief Review of Recent Literature. Report No: 101. Edinburgh: Scottish Council for Research in Education, 2000.Google Scholar
  2. 2.
    Bloch A. Chronic illness and its impact on academic achievement. Pediatrician 1986;13(2–3):128–32.PubMedGoogle Scholar
  3. 3.
    Schlieper A. Chronic illness and school achievement. Dev Med Child Neurol 1985;27(1):75–79.PubMedCrossRefGoogle Scholar
  4. 4.
    Bailey-Britton AM. The relationship between health and academic performance in school-age children. Issues Compr Pediatr Nurs 1987;10(5–6):273–89.PubMedCrossRefGoogle Scholar
  5. 5.
    Record RG, McKeown T, Edwards JH. The relation of measured intelligence to birth weight and duration of gestation. Ann Hum Genet 1969;33(1):71–79.PubMedCrossRefGoogle Scholar
  6. 6.
    Drillien CM, Thomson AJ, Burgoyne K. Low-birthweight children at early school-age: A longitudinal study. Dev Med Child Neurol 1980;22(1):26–47.PubMedCrossRefGoogle Scholar
  7. 7.
    Lagerstrom M, Bremme K, Eneroth P, Janson CG. School marks and IQ-test scores for low birth weight children at the age of 13. Eur J Obstet Gynecol Reprod Biol 1991;40(2):129–36.PubMedCrossRefGoogle Scholar
  8. 8.
    Seidman LJ, Buka SL, Goldstein JM, Horton NJ, Rieder RO, Tsuang MT. The relationship of prenatal and perinatal complications to cognitive functioning at age 7 in the New England Cohorts of the National Collaborative Perinatal Project. Schizophr Bull 2000;26(2):309–21.PubMedCrossRefGoogle Scholar
  9. 9.
    Matte TD, Bresnahan M, Begg MD, Susser E. Influence of variation in birth weight within normal range and within sibships on IQ at age 7 years: Cohort study. Br Med J 2001;323(7308):310.CrossRefGoogle Scholar
  10. 10.
    Richards M, Hardy R, Kuh D, Wadsworth ME. Birth weight and cognitive function in the British 1946 birth cohort: Longitudinal population based study. Br Med J 2001;322(7280):199.CrossRefGoogle Scholar
  11. 11.
    Jefferis BJMH, Power C, Hertzman C. Birth weight, childhood socioeconomic environment, and cognitive development in the 1958 British birth cohort study. Br Med J 2002;325(7359):305.CrossRefGoogle Scholar
  12. 12.
    Fowler MG, Johnson MP, Atkinson SS. School achievement and absence in children with chronic health conditions. J Pediatr 1985;106(4):683–87.PubMedCrossRefGoogle Scholar
  13. 13.
    Wolfe BL. The influence of health on school outcomes. A multivariate approach. Med Care 1985;23(10):1127–38.PubMedCrossRefGoogle Scholar
  14. 14.
    Fowler MG, Cross AW. Preschool risk factors as predictors of early school performance. J Dev Behav Pediatr 1986;7(4):237–41.PubMedCrossRefGoogle Scholar
  15. 15.
    Cadman D, Walter SD, Chambers LW, Ferguson R, Szatmari P, Johnson N, McNamee J. Predicting problems in school performance from preschool health, developmental and behavioural assessments. CMAJ 1988;139(1):31–36.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Denton K, West J. Children’s Reading and Mathematics Achievement in Kindergarten and First Grade. Washington, DC: National Center for Education Statistics, 2002.CrossRefGoogle Scholar
  17. 17.
    Bender BG. Are asthmatic children educationally handicapped School Psychology Q 1995;10(4):274–91.CrossRefGoogle Scholar
  18. 18.
    Byrd RS, Weitzman M. Predictors of early grade retention among children in the United States. Pediatrics 1994;93(3):481–87.PubMedGoogle Scholar
  19. 19.
    McCarthy AM, Lindgren S, Mengeling MA, Tsalikian E, Engvall J. Factors associated with academic achievement in children with type 1 diabetes. Diabetes Care 2003;26(1):112–17.PubMedCrossRefGoogle Scholar
  20. 20.
    Hagen JWB. Intellective functioning and strategy use in children with insulin-dependent diabetes mellitus. Child Dev 1990;61(6):1714.PubMedCrossRefGoogle Scholar
  21. 21.
    Roos LL, Gupta S, Soodeen R, Jebamani L. Data quality in an information-rich environment: Canada as an example. Can J Aging 2005;24(Suppl 1):153–70.PubMedCrossRefGoogle Scholar
  22. 22.
    Starfield B, Weiner J, Mumford L, Steinwachs D. Ambulatory care groups: A categorization of diagnoses for research and management. Health Serv Res 1991;26(1):53–74.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Weiner JP, Starfield BH, Steinwachs DM, Mumford LM. Development and application of a population-oriented measure of ambulatory care case-mix. Med Care 1991;29(5):452–72.PubMedCrossRefGoogle Scholar
  24. 24.
    Tremblay S, Ross N, Berthelot J-M. Factors Affecting Grade 3 Student Performance in Ontario: A Multilevel Analysis. Report No: 81-003. Statistics Canada, 2001.Google Scholar
  25. 25.
    White KR. The relation between socioeconomic status and academic achievement. Psychol Bull 1982;91(3):461–81.CrossRefGoogle Scholar
  26. 26.
    Ma X, Klinger DA. Hierarchical linear modelling of student and school effects on academic achievement. Can J Educ 2000;25(1):41–55.CrossRefGoogle Scholar
  27. 27.
    Caldas SJ, Bankston III C. Effect of school population socioeconomic status on individual academic achievement. J Educ Res 2001;90(5):269–77.CrossRefGoogle Scholar
  28. 28.
    Cohen J. Statistical Power Analysis for the Behavioral Sciences, second edition. Hillsdale, NJ: L. Erlbaum Associates, 1988.Google Scholar
  29. 29.
    Sweetland JD, DeSimone PS. Age of entry, sex, and academic achievement in elementary school children. Psychology in the Schools 1987;24(4):406–12.CrossRefGoogle Scholar
  30. 30.
    Breznitz Z, Teltsch T. The effect of school entrance age on academic achievement. Psychology in the Schools 1989;26(1):62–68.CrossRefGoogle Scholar
  31. 31.
    Morrison FJ, Griffith EM, Alberts DM. Nature-nurture in the classroom: Entrance age, school readiness, and learning in children. Dev Psychol 1997;33(2):254–62.PubMedCrossRefGoogle Scholar
  32. 32.
    Elkin L. Class of 1979 Project: Longitudinal Implications of School Entry Variability in Readiness. Regina, SK: University of Regina, 2001.Google Scholar
  33. 33.
    Wang MC, Haertel GD, Walberg HJ. Toward a knowledge base for school learning. Rev Educ Res 1993;63(3):249–94.CrossRefGoogle Scholar
  34. 34.
    Suter LE. Is student achievement immutable? Evidence from international studies on schooling and student achievement. Rev Educ Res 2000;70(4):529–45.CrossRefGoogle Scholar
  35. 35.
    Hoff-Ginsberg E. Mother-child conversation in different social classes and communicative settings. Child Dev 1991;62(4):782.PubMedCrossRefGoogle Scholar
  36. 36.
    Hart BJ, Risley TR. Meaningful Differences. Baltimore, MD: Paul H. Brookes Publishing, 1995.Google Scholar
  37. 37.
    Huttenlocher J. Language input and language growth. Prev Med 1998;27(2):195–99.PubMedCrossRefGoogle Scholar
  38. 38.
    Yeung WJ, Linver MR, Brooks-Gunn J. How money matters for young children’s development: Parental investment and family processes. Child Dev 2002;73(6):1861–79.PubMedCrossRefGoogle Scholar
  39. 39.
    Linver MR, Brooks-Gunn J, Kohen DE. Family processes as pathways from income to young children’s development. Dev Psychol 2002;38(5):719–34.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Elfenbein DS, Felice ME. Adolescent pregnancy. Pediatr Clin North Am 2003;50(4):781–800.PubMedCrossRefGoogle Scholar
  41. 41.
    Duncan GJ, Brooks-Gunn J, Klebanov PK. Economic deprivation and early childhood development. Child Dev 1994;65(2 Spec No):296–318.PubMedCrossRefGoogle Scholar
  42. 42.
    Haveman R, Wolfe BL. The determinants of children’s attainments: A review of methods and findings. J Econ Lit 1995;33(4):1829–78.Google Scholar
  43. 43.
    Brooks-Gunn J, Duncan GJ. The effects of poverty on children. Future Child 1997;7(2):55–71.PubMedCrossRefGoogle Scholar
  44. 44.
    Klebanov PK, Brooks-Gunn J, McCarton C, McCormick MC. The contribution of neighborhood and family income to developmental test scores over the first three years of life. Child Dev 1998;69(5):1420–36.PubMedCrossRefGoogle Scholar
  45. 45.
    Smith JR, Brooks-Gunn J, Kohen D, McCarton C. Transitions on and off AFDC: Implications for parenting and children’s cognitive development. Child Dev 2001;72(5):1512–33.PubMedCrossRefGoogle Scholar
  46. 46.
    Willms JD. Indicators of Mathematics Achievement in Canadian Elementary Schools. Ottawa: Statistics Canada, 1996.Google Scholar
  47. 47.
    Van de gaer E, Pustjens H, Van Damme J, De Munter A. Effects of single-sex versus coeducational classes and schools on gender differences in progress in language and mathematics achievement. Br J Sociol Educ 2004;25(3):307–22.CrossRefGoogle Scholar
  48. 48.
    Brownell M, Roos NP, Fransoo RR, Guevremont A. Is the class half empty? A population-based perspective on socioeconomic status and educational outcomes. IRPP Choices 2006;12(5):1–30.Google Scholar
  49. 49.
    Calame A, Fawer CL, Claeys V, Arrazola L, Ducret S, Jaunin L. Neurodevelopmental outcome and school performance of very-low-birth-weight infants at 8 years of age. Eur J Pediatr 1986;145(6):461–66.PubMedCrossRefGoogle Scholar
  50. 50.
    McGrath M, Sullivan M. Birth weight, neonatal morbidities, and school age outcomes in full-term and preterm infants. Issues Compr Pediatr Nurs 2002;25(4):231–54.PubMedCrossRefGoogle Scholar
  51. 51.
    Mustard CA, Derksen S, Berthelot J-M, Wolfson MC. Assessing ecologic proxies for household income: A comparison of household and neighbourhood-level income measures in the study of population health status. Health and Place 1999;5(2):157–71.PubMedCrossRefGoogle Scholar
  52. 52.
    Starfield B, Hankin J, Steinwachs D, Horn S, Benson P, Katz H, Gabriel A. Utilization and morbidity: Random or tandem Pediatrics 1985;75(2):241–47.PubMedGoogle Scholar
  53. 53.
    Diaz C, Starfield B, Holtzman N, Mellits ED, Hankin J, Smalky K, Benson P. Ill health and use of medical care. Community-based assessment of morbidity in children. Med Care 1986;24(9):848–56.PubMedCrossRefGoogle Scholar
  54. 54.
    Gissler M, Hemminki E, Louhiala P, Jarvelin MR. Health registers as a feasible means of measuring health status in childhood–A 7-year follow-up of the 1987 Finnish birth cohort. Paediatr Perinat Epidemiol 1998;12(4):437–55.PubMedCrossRefGoogle Scholar
  55. 55.
    Mosteller F, Tukey JW. Data Analysis and Regression: A Second Course in Statistics. Reading, MA: Addison-Wesley, 1977.Google Scholar
  56. 56.
    Willms JD. Social class segregation and its relationship to pupils’ examination results in Scotland. Am Sociol Rev 1986;51(2):224–41.CrossRefGoogle Scholar
  57. 57.
    Anderson JC, Gerbing DW. Structural equation modeling in practice: A review and recommended two-step approach. Psychol Bull 1988;103:411–23.CrossRefGoogle Scholar

Copyright information

© The Canadian Public Health Association 2008

Authors and Affiliations

  • Randall R. Fransoo
    • 1
    Email author
  • Noralou P. Roos
    • 1
  • Patricia J. Martens
    • 1
  • Maureen Heaman
    • 2
  • Benjamin Levin
    • 3
  • Dan Chateau
    • 1
  1. 1.Manitoba Centre for Health Policy and Department of Community Health SciencesFaculty of Medicine, University of ManitobaWinnipegCanada
  2. 2.Faculty of NursingUniversity of ManitobaCanada
  3. 3.Ontario Institute for Studies in EducationUniversity of TorontoTorontoCanada

Personalised recommendations