Advertisement

Canadian Journal of Public Health

, Volume 95, Issue 3, pp 228–232 | Cite as

Angina and Socio-economic Status in Ontario

How Do Characteristics of the County You Live In Influence Your Chance of Developing Heart Disease?
  • Linda Feldman
  • Colin McMullan
  • Tom Abernathy
Article

Abstract

Objective

To assist in the development of community heart health programming and policy development, the Central West Health Planning Information Network (CWHPIN) was asked by its partners to collaborate in obtaining information that might clarify the relationships between socio-economic status (SES) and heart disease among residents of Ontario, Canada. The purpose of this component of the project was to explore, at the county level, how much of the variation in angina pectoris (angina) could be explained by SES variables.

Study Design

Linear regression modeling was used to identify key predictors of angina hospitalization rates in counties Ontario-wide.

Results

Results of the linear regression modeling showed that SES variables (most notably education and occupation) were key predictors of angina, even when traditional risk factors (i.e., smoking, etc.) were included in the analysis.

Conclusion

This study demonstrates that, at the county level, socio-economic variables such as education and occupation have a significant relationship with rates of heart disease at the population level, even when including the traditional risk factors in the analysis.

Résumé

Objectif

Pour favoriser l’élaboration de programmes et de politiques communautaires de santé cardiovasculaire, les partenaires du réseau Central West Health Planning Information Network (CWHPIN) ont cherché à obtenir des données pour clarifier la relation entre le statut socioéconomique (SSE) et les cardiopathies chez les résidents de l’Ontario. Ce volet du projet visait à analyser, à l’échelle des comtés, la mesure dans laquelle les écarts dans la prévalence des angines de poitrine s’expliqueraient par les variables SSE.

Méthode

Des modèles de régression linéaire ont permis de déterminer les principaux prédicteurs des taux d’hospitalisation pour angine dans les comtés de tout l’Ontario. Résultats: Les modèles de régression linéaire ont montré que les variables SSE (surtout le niveau d’instruction et la profession) étaient des prédicteurs clés des angines, même compte tenu des facteurs de risque classiques comme le tabagisme.

Conclusion

L’étude démontre qu’à l’échelle des comtés, il existe un lien significatif entre certaines variables socio-économiques (notamment le niveau d’instruction et la profession) et le taux de cardiopathie dans la population, même lorsque l’analyse tient compte des facteurs de risque classiques.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Heart & Stroke Foundation of Canada. 2002. https://doi.org/www.heartandstroke.ca/.
  2. 2.
    Chan B, Young W. Burden of cardiac disease. In: Naylor CD, Slaughter PM (Eds.), Cardiovascular Health and Services in Ontario: An ICES Atlas. Toronto: Institute for Clinical Evaluative Studies, 1999;1–14.Google Scholar
  3. 3.
    Public Health Research Education and Development Program (PHRED). Report on the Health Status of the Residents of Ontario. PHRED, Ontario, Canada, 2000.Google Scholar
  4. 4.
    Naylor D, Slaughter N (Eds.). Glossary. Cardiovascular Health and Services in Ontario: An ICES Atlas. Toronto: ICES, 1999;xxv-xxx.Google Scholar
  5. 5.
    Jaglal S, Bondy S, Slaughter P. Risk factors for cardiovascular disease. In: Cardiovascular Health & Services in Ontario, An ICES Atlas. Toronto: ICES, 1999;63–82.Google Scholar
  6. 6.
    Kaplan G, Keil, JE. Socioeconomic factors and cardiovascular disease: A review of the literature. Circulation 1993;88(4):1973–98.CrossRefPubMedGoogle Scholar
  7. 7.
    Morrison C, Woodward M, Leslie W, Tunstall- Pedoe H. Effect of socio-economic group on incidence of, management of, and survival after myocardial infarction and coronary death: Analysis of a community coronary event register. BMJ 1997;314(7080):541–46.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Raphael D. Inequality Is Bad for Our Hearts: Why Low Income and Social Exclusion Are Major Causes of Heart Disease in Canada. Toronto: North York Heart Health Network, 2001.Google Scholar
  9. 9.
    Basinski A. Hospitalization for cardiovascular medical diagnosis. In: Cardiovascular Health & Services in Ontario, An ICES Atlas. 1999;28, 32.Google Scholar
  10. 10.
    Williams D. The conceptualization and measurement of socio-economic status: What are researchers talking about? 1999. Available on-line at: https://doi.org/www.ihpr.ubc.ca/seshealth/abtra05.htm.Google Scholar
  11. 11.
    Lynch JW, Smith GD, Kaplan GA, Dwelling, JS. Income inequality and mortality in metropolitan areas of the United States. Am J Public Health 2000;88:1074–80.CrossRefGoogle Scholar
  12. 12.
    Howell DC (Ed.). Statistical Methods, 4th edition. University of Vermont, Duxbury Press, 1997.Google Scholar
  13. 13.
    Mittleman M, Maclure M, Nachnani M, Sherwood J, Muller, JE. Educational attainment, anger and the risk of triggering MI onset. Arch Intern Med 1997;57(7):769–75.CrossRefGoogle Scholar
  14. 14.
    Winkleby MA, Jatulis DE, Frank E, Fortmann SP. Socioeconomic status and health: How education, income, and occupation contribute to risk factors for cardiovascular disease. Am J Public Health 1992;82(6):816–20.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wamala S, Mittleman M, Schenk-Gustaffson K, Orth-Gomer K. Potential explanations for the educational gradient in coronary heart disease: A population-based case control study in Swedish women. Am J Public Health 1999;89:315–21.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Muller A. Education, income inequality, and mortality: A multiple regression analysis. BMJ 2002;324:23–25.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Jerrett M. Spatial blind spots obscure inequalityhealth relationship. BMJ 2002;January 16 (letter).Google Scholar
  18. 18.
    Tremblay S, Ross N, Berthelot J-M. Regional socioeconomic context and health. Supplement to Health Reports 2002;13. Statistics Canada Catalogue 82-003.Google Scholar
  19. 19.
    Krieger N, Williams DR, Moss, NE. Measuring social class in US public health research: Concepts, methodologies and guidelines. Annu Rev Public Health 1997;18:341–78.CrossRefPubMedGoogle Scholar
  20. 20.
    Raphael D. Bridging the gap between knowledge and action on the societal determinants of cardiovascular disease: How one Canadian community effort hit–and hurdled–the lifestyle wall. Health Education 2002;03(3):177–89.CrossRefGoogle Scholar

Copyright information

© The Canadian Public Health Association 2004

Authors and Affiliations

  1. 1.Central West Health Planning Information Network (CWHPIN)HamiltonCanada

Personalised recommendations