Advertisement

Advances in Atmospheric Sciences

, Volume 18, Issue 5, pp 984–1004 | Cite as

Atmospheric Corrections Using MODTRAN for TOA and Surface BRDF Characteristics from High Resolution Spectroradiometric/Angular Measurements from a Helicopter Platform

  • Yaping ZhouEmail author
  • Ken C. Rutledge
  • Thomas P. Charlock
  • Norman G. Loeb
  • Seiji Kato
Article

Abstract

High-resolution spectral radiance measurements were taken by a spectral radiometer on board a helicopter over the US Oklahoma Southern Great Plain near the Atmospheric Radiation Measurements (ARM) site during August 1998. The radiometer has a spectral range from 350 nm to 2500 nm at 1 nm resolution. The measurements covered several grass and cropland scene types at multiple solar zenith angles. Detailed atmospheric corrections using the Moderate Resolution Transmittance (MODTRAN) radiation model and in-situ sounding and aerosol measurements have been applied to the helicopter measurements in order to retrieve the surface and top of atmosphere (TOA) Bidirectional Reflectance Distribution Function (BRDF) characteristics. The atmospheric corrections are most significant in the visible wavelengths and in the strong water vapor absorption wavelengths in the near infrared region. Adjusting the BRDF to TOA requires a larger correction in the visible channels since Rayleigh scattering contributes significantly to the TOA reflectance. The opposite corrections to the visible and near infrarred wavelengths can alter the radiance difference and ratio that many remote sensing techniques are based on, such as the normalized difference vegetation index (NOVI). The data show that surface BRDFs and spectral albedos are highly sensitive to the vegetation type and sol:!r zenith angle while BRDF at TOA depends more on atmospheric conditions and the viewing geometry. Comparison with the Clouds and the Earth’s Radiant Energy System (CERES) derived clear sky Angular Distribution Model (ADM) for crop and grass scene type shows a standard deviation of O.08 in broadband anisotropic function at 25° solar zenith angle and O.15 at 50° solar zenith angle, respectively.

Key words

BRDF Radiative transfer Atmospheric correction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abreu, L.W., and G. P. Anderson, 1996: The MODTRAN 2/ 3 Report and LOWTRAN 7 Model, prepared by Ontar Corporation for PL / GPOS.Google Scholar
  2. Capderou, M., 1998: Determination of the Shortwave Anisotropic Function for Clear-Sky Desert Scenes from ScaR-aB Data: Comparison with Models Issued from Other Satellite Data. J. Appl. Meteor., 37, 1398–1411.CrossRefGoogle Scholar
  3. Charlock, T.P., and T.L. Albeta, 1996: The CERES / ARM / GEWEX experiment (CAGEX) for the retrieval of radiative fluxes with satellite data. Bull. Am. Meterol. Soc., 77, 2673–2683.CrossRefGoogle Scholar
  4. d’Almeida, G. A., P. Koepke, and E. P. Shettle, 1991: Atmospheric aerosols - global climatology and radiative characteristics. A. Deepak Publishing, Hampton, Virginia, 561 pp.Google Scholar
  5. Deering, D. W., E. M. Middleton, J. R. Irons, B. L. Blad, E. A. Walter-Shea, C. J. Hays, C. Walthall, T. F. Eck, S. P. Ahmad, and B. P. Banerjee, 1992: Prairie grassland bidirectional reflectances measured by different instruments at the FIFE site. J. Geophys. Res., 97, 18887–18903.CrossRefGoogle Scholar
  6. Green, R. N., and P. O. Hinton, 1996: Estimation of angular distribution models from radiance pairs. J. Geophys. Res., 101, 16951–16959.CrossRefGoogle Scholar
  7. Holben, B. N., D. Tanre, A. Smirnov, T. F. Eck, I. Slutsker, N. Abuhassan, W. W. Newcomb, J. Schafer, B. Chatenet, F. Lavenue, Y. J. Kaufman, J. Vande Castle, A. Setzer, B. Markham, D. Clark, R. Frouin, R. Halthore, A. Karnieli, N. T. O’Neill, C. Pietras, R. T. Pinker, K. Voss, G. Zibordi, 2000: An emerging ground based aerosol climatology: Aerosol Optical Depth from AERO NET, submitted to {iJ. Geophys. Res.}Google Scholar
  8. Kato, S., T.P. Ackerman, E.E. Clothiaux, J.H. Mather, G.G. Mace, M.L. Wesely, F. Murcray, and J. Michalsky, 1997: Uncertainties in modeled and measured clear-sky surface shortwave irradiances. J. Geophys. Res., 102, 25,881–25,898.CrossRefGoogle Scholar
  9. Kato, S., M. H. Bergin, T. P. Ackerman, T. P. Charlock, E. E. Clothiaux, R. A. Ferrare, R. N. Halthore, N. Laulainen, G. G. Mace, J. Michalsky, and D. D. Turner, 2000: A comparison of the aerosol thickness derived from ground-based and airborne measurements. J. Geophy. Res., 105, 14701–14717.CrossRefGoogle Scholar
  10. Lee, 1986: Speckle suppression and analysis for synthetic aperture radar images. Optical Engineering. 25 (5), 636–646.Google Scholar
  11. Li, Z., J. Cihlar, X. Zheng, L. Moreau, and H. Ly, 1996: The bidirectional effects of AVHRR measurements over boreal regions. IEEE Trans. Geosci. Remote Sens., 34, 1308–1322.CrossRefGoogle Scholar
  12. Middleton, E. M., 1991: Solar zenith angle effects on vegetation indices in tallgrass prairie, Remote Sens. Environ., 38, 45–62.CrossRefGoogle Scholar
  13. Nicodemus, J.C. Richmond, J.J. Hsia, I.W. Ginsberg, and T. Limperis, 1997: Geometrical Considerations and Nomenclature for Reflectance. NBS Monograph 160.Google Scholar
  14. Pinker, R. T., and I. Laszlo, 1992: Global distribution of photosynthetically active radiation as observed from satellites. J. Climate, 5, 56–65.CrossRefGoogle Scholar
  15. Purgold, G. C., C.H. Whitlock, R. J. Wheeler, and S. R. LeCroy, 1994: A multiwavelength airborne radiometer scanner (ARS) for measuring surface bi-directional reflectance characteristics. Remote Sens. Environ., 47, 322–330.CrossRefGoogle Scholar
  16. Qin, W., S. Gerstl, and D. W. Deering, 1998: Examination of relations between NOVI and vegetation properties using simulated MISR data. Proceedings of JG ARSS’98, IEEE, Seattle, Washington. 1243–1245.Google Scholar
  17. Ranson, K. J., J. R. Irons, and D. L. Williams, 1994: Multispectral Bidirectional Reflectance of Northern Forest Canopies with the Advanced Solid-State Array Spectroradiometers (ASAS). Remote Sens. Environ., 47, 276–289.CrossRefGoogle Scholar
  18. Sandmeier, S. R., E. M. Middleton, D. W. Deering, and W. Qin, 1999: The potential of hyperspectral bidirectional reflectance distribution function data for grass canopy characterization. J. Geophy. Res., 104, 9547–9560.CrossRefGoogle Scholar
  19. Stokes, G. M., and S. Schwartz, 1994: The atmospheric radiation measurement (ARM) program: programmatic background and design of the cloud and radiation test bed. Bull. Amer. Meteor. Soc., 75, 1201–1221.CrossRefGoogle Scholar
  20. Suttles, J. T., R. N. Green, P. Minnis, G.L. Smith, W.F. Stayor, B. A. Wielicki, I.J. Walker, D. F. Young, V. R. Taylor, and L. L. Stowe, 1988: Angular Radiation Models for Earth-Atmosphere System, in short wave radiation, Vol. I. NASA reference Publication 1184, 144pp.Google Scholar
  21. Wanner, W., A. Strahler, B. Hu, P., Lewis, J.P. Muller, J. P., X. Li, Barker Schaaf, C., and Barnsley, M., 1997: Global retrieval of BRDF and albedo over land from EOS MODIS and MISR data: Theory and algorithm. J. Geophys. Res., 102, 17143–17162.CrossRefGoogle Scholar
  22. Wheeler, R. J., G. C. Purgold, and C.H. Whitlock, 1997: The CERES airborne radiometerscanner. Ninth conference on Atmospheric Radiation. Long Beach, California, February 2–7.Google Scholar
  23. Whitlock, C. H., and S. R. LeCroy, 1997: Theoretical I experimental validation of CERES I ERBE TOA SW angular distribution models. AMS Ninth Conference on Atmospheric Radiation. Long Beach, California, February 2–7.Google Scholar
  24. Wielicki, B. A., and B. R. Barkstrom, E. F. Harrison, R. B. Lee III, G. L. Smith, and J.E. Cooper, 1996: Cloud and the Earth’s Radiance Energy System (CERES): An earth observing system experiment. Bull. Amer. M etero. Soc., 77, 853–868.CrossRefGoogle Scholar

Copyright information

© Advances in Atmospheric Sciences 2001

Authors and Affiliations

  • Yaping Zhou
    • 1
    Email author
  • Ken C. Rutledge
    • 1
  • Thomas P. Charlock
    • 2
  • Norman G. Loeb
    • 3
  • Seiji Kato
    • 3
  1. 1.Analytical Service & Material, IncHamptonUSA
  2. 2.Atmospheric Sciences Division, NASA Langley Research CenterHamptonUSA
  3. 3.Hampton UniversityHamptonUSA

Personalised recommendations