Advertisement

Advances in Atmospheric Sciences

, Volume 18, Issue 5, pp 897–909 | Cite as

Energy and Water Balance at Soil-Air Interface in a Sahelian Region

  • Minwei Qian
  • N. Loglisci
  • C. Cassardo
  • A. Longhetto
  • C. Giraud
Article

Abstract

The aim of this work is an improvement of the parameterization of the soil moisture in the scheme of the Land Surface Process Model (LSPM) for applications over desert areas. In fact, in very dry conditions, the water vapour flux plays an important role in the evaporation processes and influences the underground profiles of humidity and temperature. The improved version of soil moisture parameterization in the LSPM scheme has been checked by using the data taken from the database of the field experiment HAPEX-Sahel (Hydrology-Atmosphere Pilot Experiment in the Sahel. 1990-1992). Model simulations refer to three different stations located in Niger (Fallow, Millet and Tiger sites) where input data for LSPM and observations were simultaneously available. The results of simulations, taking into account the water vapour flux in the soil model LSPM, seem to compare better with the observed behaviour of soil moisture and turbulent heat fluxes than those overlooking the water vapour flux, confirming the great importance of the water vapour in such dry conditions.

Key words

Drought Heavy rain Water vapour Soil moisture Evaporation LSPM SVAT HAPEX Sahel Niger 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beljiaars A.C.M., P. Viterbo, M.J. Miller, and A.K. Betts, 1996: The anomalous rainfall over the United States during July 1993: sensitivity to land surface parameterization and soil moisture anomalies. Mon. Wea. Rev., 124, 362–383.CrossRefGoogle Scholar
  2. Cassardo C., E. Carena, and A. Longhetto, 1998: Validation and sensitivity tests on improved parameterizations of a Land Surface Process Model (LSPM) in the Po Valley, Il Nuovo Cimento 21C n.2, 87–121.Google Scholar
  3. Cassardo C., J. J. Ji, and A. Longhetto, 1995: A study of the performance of a land surface process model (LSPM). Boundary-Layer Meteorology, 72, 87–121.CrossRefGoogle Scholar
  4. Clapp R. B., and G. M. Horneberger, 1978: Empirical Equations for Some Hydraulic Properties, Water Resources Research. 14, 601–604.CrossRefGoogle Scholar
  5. Cosby B. J., G. M. Horneberger, R. B. Clapp, and T. R. Ginn, 1984: A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water Resources Research,20 n.6, 682–690.CrossRefGoogle Scholar
  6. Dolman A.J., et al., 1997: The role of the land surface in Sahelian climate: HAPEX-Sahel results and future research needs. J. Hydrol., Amsterdam, 188–189, 1067–1079.Google Scholar
  7. Gash J.H.C., J.S. Wallace, C.R. Lloyd, A.J. Dolman, M.V.K. Sivakumar, and C. Renard, 1991: Measurements of evaporation from fallow Sahelian savannah at the start of the dry season. Quart. J. Royal Meteorological Society, 117, 749–760.CrossRefGoogle Scholar
  8. Goutorbe J.P., T. Lebel, A. Tinga, P. Bessemoulin, J. Brouwer, A.J. Dolman, E.T. Engman, J.H.C. Gash, M. Hoepffner, P. Kabat, Y.H. Kerr, B. Monteny, S. Prince, F. Said, P. Sellers, and J.S. Wallace, 1993: HAPEX-Sahel a large scale study of land-atmosphere interaction in the semi-arid tropics. Ann. Geophys. 12, 53–64.CrossRefGoogle Scholar
  9. Huntingford C., S.J. Allen, and R.J. Harding, 1995. An inter-comparison of single and dual-source vegetation-atmosphere transfer models applied to transpiration from Sahelian Savannah. Boundary-Layer Meteorology, 74, 397–418.CrossRefGoogle Scholar
  10. Kabat P., A.J. Dolman, and J.A. Elbers, 1997: Evaporation, sensible heat and surface conductance of fallow savanna and patterned woodland in the Sahel. J. Hydrol., Amsterdam, 188–189, 494–515.Google Scholar
  11. Loglisci N., G.P. Balsamo, C. Cassardo, and M.W. Qian, 2001: A technical description of the Land Surface Process Model (LSPM), version 2000, Internal report C.S.I. (Sala Situazione Rischi Naturali, C.so Unione Sovietica, 216–10134 Torino, Italy, loglisci@ph.unito.it).Google Scholar
  12. Niu G.Y., S.F. Sun, and Z.X. Hong, 1997: Water and heat transport in the desert soil and atmospheric boundary layer in western China. Boundary-Layer Meteorology, 85, 179–195.CrossRefGoogle Scholar
  13. Nicholson S, 2000: Land Surface Processes and Sahel climate. Reviews of Geophysics, 38, 117–139.CrossRefGoogle Scholar
  14. Prince S.D., Y.H. Kerr, J.P. Goutorbe, T. Lebel, A. Tinga, J. Brouwer, A.J. Dolman, E.T. Engman, J.H.C. Gash, M. Hoepffner, P. Kabat, B. Molteny, F. Said, P. Sellers, and J. Wallace, 1995: Geographical Biological and Remote Sensing aspects of the Hydrologic Atmosphere Pilot Experiment in the Sahel (HAPEX-Sahel), Remote Sensing Environment. 51, 215–234.CrossRefGoogle Scholar
  15. Ruti P.M., C. Cassardo, C. Cacciamani, T. Paccagnella, A. Longhetto, and A. Bargagli, 1997: Inter-comparison between BATS and LSPM surface schemes, using point micrometeorological data set. Beitr. Phys. Atm., 70, 201–220.Google Scholar
  16. Verhoef A., S. J. Allen, and C.R. Lloyd, 1999: Seasonal variation of surface energy balance over two Sahelian surfaces. International Journal of Climatology, 19, 1267–1277.CrossRefGoogle Scholar
  17. UNEP, 1992: World Atlas of Desertification. Pub. Edward Arnold, UK.Google Scholar
  18. Viterbo P., 1995: Initial values of soil water and the quality of the summer forecast. ECMW F Newsletter, 69, 2–8.Google Scholar

Copyright information

© Advances in Atmospheric Sciences 2001

Authors and Affiliations

  • Minwei Qian
    • 1
    • 2
    • 4
  • N. Loglisci
    • 1
  • C. Cassardo
    • 1
  • A. Longhetto
    • 1
    • 4
  • C. Giraud
    • 3
  1. 1.Department of General PhysicsUniversity of TurinTurinItaly
  2. 2.Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  3. 3.Institute of Cosmo-GeophysicsNational Research Council (CNR)TurinItaly
  4. 4.ICSC-World LaboratoryLausanneSwitzerland

Personalised recommendations