Advertisement

Molecular Medicine

, Volume 8, Issue 9, pp 551–558 | Cite as

SVR Angiosarcomas can be Rejected by CD4 Costimulation Dependent and CD8 Costimulation Independent Pathways

  • Jack L. Arbiser
  • Adam Bingaman
  • Megan Durham
  • Shannon Cowan
  • Cynthia Cohen
  • Elham Zarnegar
  • Vijay Varma
  • Christian P. Larsen
Original Articles

Abstract

Purpose

We wished to determine whether virally-induced endothelial tumors are rejected by CD4 and CD8 lymphocytes, and whether there are differences in requirements for costimulation in the rejection of these tumors by lymphocyte subsets.

Experimental Design

We have developed a model of endothelial tumorigenesis through the sequential introduction of SV40 large T antigen and oncogenic H-ras into endothelial cells. These cells (SVR cells) form highly aggressive angiosarcomas in immunocompromised mice, but do not grow in syngeneic C57BL/6 mice. Using both acute blockade with systemic administration of antibodies and mice genetically deficient in the costimulatory molecules CD28, CD40, and CD40L, we have delineated the requirements of costimulation required to reject this virally-induced endothelial tumor.

Results

Control of SVR angiosarcoma is mediated through T lymphocytes, and both CD4 and CD8 lymphocytes are capable of controlling SVR angiosarcoma growth in vivo. Mice genetically deficient in CD28, CD40, and CD40L were able to reject SVR tumors, but depletion of these mice of CD8, but not CD4 cells led to rapid tumor growth. This data suggests that CD4 mediated rejection has a greater dependence of costimulation than CD8 mediated rejection. Surprisingly, acute depletion of costimulatory molecules in immunocompetent C57BL/6 mice led to rapid tumor growth.

Conclusions

Significant differences exist in the immune status of mice acutely depleted of costimulatory molecules versus genetically deficient mice. Our results suggest that acute depletion is more immunosuppressive than genetic depletion. Humans who undergo costimulatory blockade may require periodic surveillance for virally-induced tumors.

Notes

Acknowledgements

JLA was supported in part by the American Skin Association and grants AR02030, AR44947, and RO1AR47901 from the National Institutes of Health. AB, MD, SC, and CL were supported in part by grants DK50762, DK/AI 40519, AI44644, and P30AR42687 (Emory Skin Disease Research Core Center Grant) from the National Institutes of Health, EEC Award 9731643 from the National Science Foundation, and the Carlos and Marguerite Mason Trust.

References

  1. 1.
    Blauvelt A. (1999) The role of human herpesvirus 8 in the pathogenesis of Kaposi’s sarcoma. Adv. Dermatol. 14: 167–206.PubMedGoogle Scholar
  2. 2.
    Offermann MK. (1999) Consideration of host-viral interactions in the pathogenesis of Kaposi’s sarcoma. J. Acquir. Immune Defic. Syndr. 21 Suppl. 1: S58–S65.Google Scholar
  3. 3.
    Chang Y, Cesarman E, Pessin MS, et al. (1994) Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 266 (5192): 1865–1869.CrossRefPubMedGoogle Scholar
  4. 4.
    Henle W, Diehl V, Kohn G, et al. (1967) Herpes-type virus and chromosome marker in normal leukocytes after growth with irradiated Burkitt cells. Science 157 (792): 1064–1065CrossRefPubMedGoogle Scholar
  5. 5.
    Zur HH, de Villiers EM, Gissmann L. (1981) Papillomavirus infections and human genital cancer. Gynecol. Oncol. 12 (2 Pt 2): S124–S128.CrossRefGoogle Scholar
  6. 6.
    Howley PM. (1983) The molecular biology of papillomavirus transformation. Warner-Lambert Parke-Davis Award Lecture. Am. J. Pathol. 113(3): 414–421.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Kaye KM, Izumi KM, Kieff E. (1993) Epstein-Barr virus latent membrane protein 1 is essential for B-lymphocyte growth transformation. Proc. Natl. Acad. Sci. USA 90(19): 9150–9154.CrossRefPubMedGoogle Scholar
  8. 8.
    Rizzo P, Carbone M, Fisher SG, et al. (1999) Simian virus 40 is present in most United States human mesotheliomas, but it is rarely present in non-Hodgkin’s lymphoma. Chest 116 (6 Suppl): 470S–473S.CrossRefPubMedGoogle Scholar
  9. 9.
    Carbone M, Pass HI, Rizzo P, et al. (1994) Simian virus 40-like DNA sequences in human pleural mesothelioma. Oncogene 9(6): 1781–1790.PubMedGoogle Scholar
  10. 10.
    Bais C, Santomasso B, Coso O, et al. (1998) G-protein-coupled receptor of Kaposi’s sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature 391(6662): 86–89.CrossRefPubMedGoogle Scholar
  11. 11.
    Aoki Y, Jones KD, Tosato G. (2000) Kaposi’s sarcoma-associated herpesvirus-encoded interleukin-6. J. Hematother Stem Cell Res. 9(2): 137–145.CrossRefPubMedGoogle Scholar
  12. 12.
    Moore PS, Boshoff C, Weiss RA, Chang Y. (1996) Molecular mimicry of human cytokine and cytokine response pathway genes by KSHV. Science 274(5293): 1739–1744.CrossRefPubMedGoogle Scholar
  13. 13.
    Lebbe C, Blum L, Pellet C, et al. (1998) Clinical and biological impact of antiretroviral therapy with protease inhibitors on HIV-related Kaposi’s sarcoma. AIDS 12(7): F45–F49.CrossRefPubMedGoogle Scholar
  14. 14.
    Abrams JR, Lebwohl MG, Guzzo CA, et al. (1999) CTLA4Ig-mediated blockade of T-cell costimulation in patients with psoriasis vulgaris. J. Clin. Invest. 103(9): 1243–1252.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Guinan EC, Boussiotis VA, Neuberg D, et al. (1999) Transplantation of anergic histoincompatible bone marrow allografts. N. Engl. J. Med. 340(22): 1704–1714.CrossRefPubMedGoogle Scholar
  16. 16.
    Arbiser JL, Moses MA, Fernandez CA, et al. (1997) Oncogenic H-ras stimulates tumor angiogenesis by two distinct pathways. Proc. Natl. Acad. Sci. USA 94(3): 861–866.CrossRefPubMedGoogle Scholar
  17. 17.
    Otley CC, Pittelkow MR. (2000) Skin cancer in liver transplant recipients. Liver Transpl. 6(3): 253–262.CrossRefPubMedGoogle Scholar
  18. 18.
    Shmueli D, Shapira Z, Yussim A, et al. (1989) The incidence of Kaposi sarcoma in renal transplant patients and its relation to immunosuppression. Transplant Proc. 21(1 Pt 3): 3209–3210.PubMedGoogle Scholar
  19. 19.
    Kalra PA, Wood GN, O’Donoghue DJ, et al. (1994) Complete regression of recurrent diffuse malignant lymphoma after withdrawal of cyclosporin A in a renal transplant recipient. Nephrol Dial Transplant 9(8): 1197–1200.CrossRefPubMedGoogle Scholar
  20. 20.
    Fric M, Hartmann A, Klehr HU, et al. (1990) (Regression of cerebral post-transplantation lymphoma under cyclosporin A reduction). Klin Wochenschr 68(23): 1189–1194.CrossRefPubMedGoogle Scholar
  21. 21.
    Vaccher E, di Gennaro G, Nasti G, et al. (1999) HAART is effective as anti-Kaposi’s sarcoma therapy only after remission has been induced by chemotherapy. J. Acquir. Immune Defic. Syndr. 22(4): 407–408.CrossRefPubMedGoogle Scholar
  22. 22.
    Bower M, Fox P, Fife K, et al. (1999) Highly active antiretroviral therapy (HAART) prolongs time to treatment failure in Kaposi’s sarcoma. AIDS 13(15): 2105–2111.CrossRefPubMedGoogle Scholar
  23. 23.
    Parra R, Leal M, Delgado J, et al. (1998) Regression of invasive AIDS-related Kaposi’s sarcoma following antiretroviral therapy. Clin. Infect. Dis. 26(1): 218–219.CrossRefPubMedGoogle Scholar
  24. 24.
    Schell TD, Mylin LM, Georgoff I, et al. (1999) Cytotoxic T-lymphocyte epitope immunodominance in the control of choroid plexus tumors in simian virus 40 large T antigen transgenic mice. J. Virol. 73(7): 5981–5993.PubMedPubMedCentralGoogle Scholar
  25. 25.
    Jolicoeur C, Hanahan D, Smith KM. (1994) T-cell tolerance toward a transgenic beta-cell antigen and transcription of endogenous pancreatic genes in thymus. Proc. Natl. Acad. Sci. USA 91(14): 6707–6711.CrossRefPubMedGoogle Scholar
  26. 26.
    Ohashi PS, Oehen S, Buerki K, et al. (1991) Ablation of “tolerance” and induction of diabetes by virus infection in viral antigen transgenic mice. Cell 65(2): 305–317.CrossRefPubMedGoogle Scholar
  27. 27.
    Gooding LR. (1977) Specificities of killing by cytotoxic lymphocytes generated in vivo and in vitro to syngeneic SV40 transformed cells. J. Immunol. 118(3): 920–927.PubMedGoogle Scholar
  28. 28.
    Bright RK, Beames B, Shearer MH, Kennedy RC. (1996) Protection against a lethal challenge with SV40-transformed cells by the direct injection of DNA-encoding SV40 large tumor antigen. Cancer Res. 56(5): 1126–1130.PubMedGoogle Scholar
  29. 29.
    Jennings SR, Fresa KL, Lippe PA, et al. (1988) Frequency analysis of simian virus 40-specific cytotoxic T lymphocyte precursors in the high responder C57BL/6 mouse strain. J. Gen. Virol. 69 (Pt 10): 2493–2503.CrossRefPubMedGoogle Scholar
  30. 30.
    Mylin LM, Bonneau RH, Lippolis JD, Tevethia SS. (1995) Hierarchy among multiple H-2b-restricted cytotoxic T-lymphocyte epitopes within simian virus 40 T antigen. J. Virol. 69(11): 6665–6677.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Radkov SA, Kellam P, Boshoff C. (2000) The latent nuclear antigen of Kaposi sarcoma-associated herpesvirus targets the retinoblastoma-E2F pathway and with the oncogene Hras transforms primary rat cells. Nat. Med. 6(10): 1121–1127.CrossRefPubMedGoogle Scholar
  32. 32.
    Nicolaides A, Huang YQ, Li JJ, et al. (1994) Gene amplification and multiple mutations of the K-ras oncogene in Kaposi’s sarcoma. Anticancer Res. 14 (3A): 921–926.PubMedGoogle Scholar
  33. 33.
    Larsen CP, Elwood ET, Alexander DZ, et al. (1996) Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature 381(6581): 434–438.CrossRefPubMedGoogle Scholar
  34. 34.
    Pearson TC, Madsen JC, Larsen CP, et al. (1992) Induction of transplantation tolerance in adults using donor antigen and anti-CD4 monoclonal antibody. Transplantation 54(3): 475–483.CrossRefPubMedGoogle Scholar
  35. 35.
    Trambley J, Bingaman AW, Lin A, Elwood ET, et al. (1999) Asialo GM1(+) CD8(+) T cells play a critical role in costimulation blockade-resistant allograft rejection. J. Clin. Invest. 104(12): 1715–1722.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Chen L, Ashe S, Brady WA, et al. (1992) Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4. Cell 71(7): 1093–1102.CrossRefPubMedGoogle Scholar
  37. 37.
    Chen L, Linsley PS, Hellstrom KE. (1993) Costimulation of T cells for tumor immunity. Immunol. Today 14(10): 483–486.CrossRefPubMedGoogle Scholar
  38. 38.
    Zhan Y, Corbett AJ, Brady JL, et al. (2000) CD4 help-independent induction of cytotoxic CD8 cells to allogeneic P815 tumor cells is absolutely dependent on costimulation. J. Immunol. 165(7): 3612–3619.CrossRefPubMedGoogle Scholar
  39. 39.
    Siegel CT, Schreiber K, Meredith SC, et al. (2000) Enhanced growth of primary tumors in cancer-prone mice after immunization against the mutant region of an inherited oncoprotein. J. Exp. Med. 191(11): 1945–1956.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Beissert S, Bluestone JA, Mindt I, et al. (1999) Reduced ultraviolet-induced carcinogenesis in mice with a functional disruption in B7-mediated costimulation. J. Immunol. 163(12): 6725–6731.PubMedGoogle Scholar
  41. 41.
    Levi F, Randimbison L, Te VC, La Vecchia C. (1996) Non-Hodgkin’s lymphomas, chronic lymphocytic leukaemias and skin cancers. Br. J. Cancer 74(11): 1847–1850.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Bridges N, Steinberg JJ. (1986) Aggressive squamous cell carcinoma of the skin after chronic lymphocytic leukemia. J. Surg. Oncol. 33(1): 27–30.CrossRefPubMedGoogle Scholar
  43. 43.
    Sperling AI, Linsley PS, Barrett TA, Bluestone JA. (1993) CD28-mediated costimulation is necessary for the activation of T cell receptor-gamma delta+ T lymphocytes. J Immunol. 151(11): 6043–6050.PubMedGoogle Scholar
  44. 44.
    Penninger JM, Timms E, Shahinian A, et al. (1995) Alloreactive gamma delta thymocytes utilize distinct costimulatory signals from peripheral T cells. J. Immunol. 155(8): 3847–3855.PubMedGoogle Scholar
  45. 45.
    Girardi M, Oppenheim DE, Steele CR, et al. (2001) Regulation of cutaneous malignancy by gammadelta T cells. Science 294(5542): 605–609.CrossRefPubMedGoogle Scholar
  46. 46.
    Hutloff A, Dittrich AM, Beier KC, et al. (1999) ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397(6716): 263–266.CrossRefPubMedGoogle Scholar
  47. 47.
    Riley JL, Blair PJ, Musser JT, et al. (2001) ICOS costimulation requires IL-2 and can be prevented by CTLA-4 engagement. J. Immunol. 166(8): 4943–4948.CrossRefPubMedGoogle Scholar

Copyright information

© NSLIJ Research Institute 2002

Authors and Affiliations

  • Jack L. Arbiser
    • 1
  • Adam Bingaman
    • 2
  • Megan Durham
    • 2
  • Shannon Cowan
    • 2
  • Cynthia Cohen
    • 3
  • Elham Zarnegar
    • 3
  • Vijay Varma
    • 3
  • Christian P. Larsen
    • 2
  1. 1.Department of DermatologyEmory University School of Medicine, and Veterans Administration Medical CenterAtlantaUSA
  2. 2.Department of SurgeryEmory University School of Medicine, and Veterans Administration Medical CenterAtlantaUSA
  3. 3.Department of PathologyEmory University School of Medicine, and Veterans Administration Medical CenterAtlantaUSA

Personalised recommendations