Advertisement

Hormones

, Volume 15, Issue 1, pp 23–34 | Cite as

Recent advances in the molecular mechanisms causing primary generalized glucocorticoid resistance

  • Nicolas C. NicolaidesEmail author
  • Agaristi Lamprokostopoulou
  • Amalia Sertedaki
  • Evangelia Charmandari
Review

Abstract

Primary Generalized Glucocorticoid Resistance is a rare condition characterized by generalized, partial, target tissue insensitivity to glucocorticoids owing to inactivating mutations, insertions or deletions in the human glucocorticoid receptor (hGR) gene (NR3C1). Recent advances in molecular and structural biology have enabled us to elucidate the molecular mechanisms of action of the mutant receptors and to understand how certain conformational alterations of the defective hGRs result in generalized glucocorticoid resistance. Furthermore, our ever-increasing understanding of the molecular mechanisms of glucocorticoid action indicates that the glucocorticoid signaling pathway is a stochastic system that plays a fundamental role in maintaining both basal and stress-related homeostasis. In this review, we summarize the clinical manifestations and molecular pathogenesis of Primary Generalized Glucocorticoid Resistance, we present our recent findings from the functional characterization of three novel heterozygous point mutations in the NR3C1 gene, and we discuss the diagnostic approach and therapeutic management of the condition. When the condition is suspected, we recommend sequencing analysis of the NR3C1 gene as well as of other genes encoding proteins involved in the glucocorticoid signal transduction. The tremendous progress of next-generation sequencing will undoubtedly uncover novel hGR partners or cofactors.

Key words

Glucocorticoids Glucocorticoid receptor Glucocorticoid resistance Glucocorticoid signaling NR3C1 mutations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Charmandari E, Tsigos C, Chrousos GP, 2005 Endocrinology of the stress response. Annu Rev Physiol 67: 259–284.CrossRefPubMedGoogle Scholar
  2. 2.
    Chrousos GP, Kino T, 2005 Intracellular glucocorticoid signaling: A formerly simple system turns stochastic. Sci STKE. 304: pe48.Google Scholar
  3. 3.
    Chrousos GP, Kino T, 2007 Glucocorticoid action networks and complex psychiatric and/or somatic disorders. Stress 10: 213–219.CrossRefPubMedGoogle Scholar
  4. 4.
    Nicolaides NC, Charmandari E, Chrousos GP, Kino T, 2014 Circadian endocrine rhythms: the hypothalamic-pituitary-adrenal axis and its actions. Ann N Y Acad Sci 1318: 71–80.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Nicolaides NC, Kyratzi E, Lamprokostopoulou A, Chrousos GP, Charmandari E, 2015 Stress, the stress system and the role of glucocorticoids. Neuroimmunomodulation 22: 6–19.CrossRefPubMedGoogle Scholar
  6. 6.
    Nicolaides NC, Galata Z, Kino T, Chrousos GP, Charmandari E, 2010 The human glucocorticoid receptor: Molecular basis of biologic function. Steroids 75: 1–12.CrossRefPubMedGoogle Scholar
  7. 7.
    Chrousos GP, 2009 Stress and disorders of the stress system. Nat Rev Endocrinol 5: 374–81.CrossRefPubMedGoogle Scholar
  8. 8.
    Nicolaides NC, Charmandari E, Chrousos GP, 2015 The hypothalamic-pituitary-adrenal axis in human health and disease. In: Cokkinos DV, editor. Introduction in Translational Cardiovascular Research. Springer International Publishing Switzerland; p. 91–107.Google Scholar
  9. 9.
    Charmandari E, Nicolaides NC, Chrousos GP, 2014 Adrenal insufficiency. Lancet 383: 2152–2167.CrossRefPubMedGoogle Scholar
  10. 10.
    Quax RA, Manenschijn L, Koper JW, et al, 2013 Glucocorticoid sensitivity in health and disease. Nat Rev Endocrinol 9: 670–686.CrossRefPubMedGoogle Scholar
  11. 11.
    Charmandari E, 2011 Primary generalized glucocorticoid resistance and hypersensitivity. Horm Res Paediatr 76: 145–155.CrossRefPubMedGoogle Scholar
  12. 12.
    Charmandari E, 2012 Primary generalized glucocorticoid resistance and hypersensitivity: the end-organ involvement in the stress response. Sci Signal 5: pt5.PubMedGoogle Scholar
  13. 13.
    Charmandari E, Kino T, Chrousos GP, 2013 Primary generalized familial and sporadic glucocorticoid resistance (Chrousos syndrome) and hypersensitivity. Endocr Dev 24: 67–85.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Nicolaides NC, Charmandari E, Chrousos GP, Kino T, 2014 Recent advances in the molecular mechanisms determining tissue sensitivity to glucocorticoids: novel mutations, circadian rhythm and ligand-induced repression of the human glucocorticoid receptor. BMC Endocr Disord 14: 71.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Charmandari E, Kino T, 2010 Chrousos syndrome: a seminal report, a phylogenetic enigma and the clinical implications of glucocorticoid signaling changes. Eur J Clin Invest 40: 932–942.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Charmandari E, Kino T, Ichijo T, Chrousos GP, 2008 Generalized glucocorticoid resistance: clinical aspects, molecular mechanisms, and implications of a rare genetic disorder. J Clin Endocrinol Metab 93: 1563–1572.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Chrousos G, 2011 Q&A: primary generalized glucocorticoid resistance. BMC Med 9: 27.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Nicolaides NC, Charmandari E, 2015 Chrousos syndrome: from molecular pathogenesis to therapeutic management. Eur J Clin Invest 45: 504–514.CrossRefPubMedGoogle Scholar
  19. 19.
    Chrousos GP, Vingerhoeds A, Brandon D, et al, 1982 Primary Cortisol resistance in man. A glucocorticoid receptor-mediated disease. J Clin Invest 69: 1261–1269.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Chrousos GP, Detera-Wadleigh SD, Karl M, 1993 Syndromes of glucocorticoid resistance. Ann Intern Med 119: 1113–1124.CrossRefPubMedGoogle Scholar
  21. 21.
    Nader N, Bachrach BE, Hurt DE, et al, 2010 A novel point mutation in the helix 10 of the human glucocorticoid receptor causes generalized glucocorticoid resistance by disrupting the structure of the ligand-binding domain. J Clin Endocrinol Metab 95: 2281–2285.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    McMahon SK, Pretorius CJ, Ungerer JP, et al, 2010 Neonatal complete generalized glucocorticoid resistance and growth hormone deficiency caused by a novel homozygous mutation in Helix 12 of the ligand binding domain of the glucocorticoid receptor gene (NR3C1). J Clin Endocrinol Metab 95: 297–302.CrossRefPubMedGoogle Scholar
  23. 23.
    Bamberger CM, Bamberger AM, de Castro M, Chrousos GP, 1995 Glucocorticoid receptor β, a potential endogenous inhibitor of glucocorticoid action in humans. J Clin Invest 95: 2435–2441.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Charmandari E, Chrousos GP, Ichijo T, et al, 2005 The human glucocorticoid receptor (hGR) β isoform suppresses the transcriptional activity of hGRα by interfering with formation of active coactivator complexes. Mol Endocrinol 19: 52–64.CrossRefPubMedGoogle Scholar
  25. 25.
    Yudt MR, Jewell CM, Bienstock RJ, Cidlowski JA, 2003 Molecular origins for the dominant negative function of human glucocorticoid receptor β. Mol Cell Biol 23: 4319–4330.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kino T, Manoli I, Kelkar S, Wang Y, Su YA, Chrousos GP, 2009 Glucocorticoid receptor (GR) β has intrinsic, GRα-independent transcriptional activity. Biochem Biophys Res Commun 381: 671–675.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kino T, Su YA, Chrousos GP, 2009 Human glucocorticoid receptor isoform beta: recent understanding of its potential implications in physiology and pathophysiology. Cell Mol Life Sci 66: 3435–3448.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Oakley RH, Cidlowski JA, 2011 Cellular processing of the glucocorticoid receptor gene and protein: new mechanisms for generating tissue-specific actions of glucocorticoids. J Biol Chem 286: 3177–3184.CrossRefPubMedGoogle Scholar
  29. 29.
    Lu NZ, Cidlowski JA, 2005 Translational regulatory mechanisms generate N-terminal glucocorticoid receptor isoforms with unique transcriptional target genes. Mol Cell 18: 331–342.CrossRefPubMedGoogle Scholar
  30. 30.
    Nader N, Chrousos GP, Kino T, 2009 Circadian rhythm transcription factor CLOCK regulates the transcriptional activity of the glucocorticoid receptor by acetylating its hinge region lysine cluster: potential physiological implications. FASEB J 23: 1572–1583.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Karl M, Lamberts SW, Koper JW, 1996 Cushing’s disease preceded by generalized glucocorticoid resistance: clinical consequences of a novel, dominant-negative glucocorticoid receptor mutation. Proc Assoc Am Physicians 108: 296–307.PubMedGoogle Scholar
  32. 32.
    Hurley DM, Accili D, Stratakis CA, 1991 Point mutation causing a single amino acid substitution in the hormone binding domain of the glucocorticoid receptor in familial glucocorticoid resistance. J Clin Invest 87: 680–686.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Karl M, Lamberts SW, Detera-Wadleigh SD, et al, 1993 Familial glucocorticoid resistance caused by a splice site deletion in the human glucocorticoid receptor gene. J Clin Endocrinol Metab 76: 683–689.PubMedGoogle Scholar
  34. 34.
    Malchoff DM, Brufsky A, Reardon G, et al, 1993 A mutation of the glucocorticoid receptor in primary Cortisol resistance. J Clin Invest 91: 1918–1925.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kino T, Stauber RH, Resau JH, Pavlakis GN, Chrousos GP, 2001 Pathologic human GR mutant has a transdominant negative effect on the wild-type GR by inhibiting its translocation into the nucleus: importance of the ligand-binding domain for intracellular GR trafficking. J Clin Endocrinol Metab 86: 5600–5608.CrossRefPubMedGoogle Scholar
  36. 36.
    Ruiz M, Lind U, Gafvels M, et al, 2001 Characterization of two novel mutations in the glucocorticoid receptor gene in patients with primary Cortisol resistance. Clin Endocrinol (Oxf) 55: 363–371.CrossRefGoogle Scholar
  37. 37.
    Mendonca BB, Leite MV, de Castro M, et al, 2002 Female pseudohermaphroditism caused by a novel homozygous missense mutation of the GR gene. J Clin Endocrinol Metab 87: 1805–1809.CrossRefPubMedGoogle Scholar
  38. 38.
    Vottero A, Kino T, Combe H, Lecomte P, Chrousos GP, 2002 A novel, C-terminal dominant negative mutation of the GR causes familial glucocorticoid resistance through abnormal interactions with p160 steroid receptor coactivators. J Clin Endocrinol Metab 87: 2658–2667.CrossRefPubMedGoogle Scholar
  39. 39.
    Charmandari E, Kino T, Vottero A, Souvatzoglou E, Bhattacharyya N, Chrousos GP, 2004 Natural glucocorticoid receptor mutants causing generalized glucocorticoid resistance: Molecular genotype, genetic transmission and clinical phenotype. J Clin Endocrinol Metab 89: 1939–1949.CrossRefPubMedGoogle Scholar
  40. 40.
    Charmandari E, Raji A, Kino T, et al, 2005 A novel point mutation in the ligand-binding domain (LBD) of the human glucocorticoid receptor (hGR) causing generalized glucocorticoid resistance: the importance of the C terminus of hGR LBD in conferring transactivational activity. J Clin Endocrinol Metab 90: 3696–3705.CrossRefPubMedGoogle Scholar
  41. 41.
    Charmandari E, Kino T, Ichijo T, Zachman K, Alatsatianos A, Chrousos GP, 2006 Functional characterization of the natural human glucocorticoid receptor (hGR) mutants hGR αR477H and hGRbG679S associated with generalized glucocorticoid resistance. J Clin Endocrinol Metab 91: 1535–1543.CrossRefPubMedGoogle Scholar
  42. 42.
    Charmandari E, Kino T, Ichijo T, et al, 2007 A novel point mutation in helix 11 of the ligand-binding domain of the human glucocorticoid receptor gene causing generalized glucocorticoid resistance. J Clin Endocrinol Metab 92: 3986–3990.CrossRefPubMedGoogle Scholar
  43. 43.
    Bouligand J, Delemer B, Hecart AC, et al, 2010 Familial glucocorticoid receptor haploinsufficiency by non-sense mediated mRNA decay, adrenal hyperplasia and apparent mineralocorticoid excess. PLoS One 5: e13563.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Zhu HJ, Dai YF, Wang O, et al, 2011 Generalized glucocorticoid resistance accompanied with an adrenocortical adenoma and caused by a novel point mutation of human glucocorticoid receptor gene. Chin Med J (Engl) 124: 551–555.Google Scholar
  45. 45.
    Roberts ML, Kino T, Nicolaides NC, et al, 2013 A novel point mutation in the DNA-binding domain (DBD) of the human glucocorticoid receptor causes primary generalized glucocorticoid resistance by disrupting the hydrophobic structure of its DBD. J Clin Endocrinol Metab 98: E790–E795.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Nicolaides NC, Roberts ML, Kino T, et al, 2014 A novel point mutation of the human glucocorticoid receptor gene causes primary generalized glucocorticoid resistance through impaired interaction with the LXXLL motif of the p160 coactivators: dissociation of the transactivating and transreppressive activities. J Clin Endocrinol Metab 99: E902–E907.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Nicolaides NC, Geer EB, Vlachakis D, et al, 2015 A Novel Mutation of the hGR Gene Causing Chrousos Syndrome. Eur J Clin Invest 45: 782–791.CrossRefPubMedGoogle Scholar
  48. 48.
    Scammell JG, Denny WB, Valentine DL, Smith DF, 2001 Overexpression of the FK506-binding immunophilin FKBP51 is the common cause of glucocorticoid resistance in three New World primates. Gen Comp Endocrinol 124: 152–165.CrossRefPubMedGoogle Scholar
  49. 49.
    Wochnik GM, Ruegg J, Abel GA, Schmidt U, Holsboer F, Rein T, 2005 FK506-binding proteins 51 and 52 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor in mammalian cells. J Biol Chem 280: 4609–4616.CrossRefPubMedGoogle Scholar
  50. 50.
    Kojika S, Sugita K, Inukai T, et al, 1996 Mechanisms of glucocorticoid resistance in human leukemic cells: implication of abnormal 90 and 70 kDa heat shock proteins. Leukemia 10: 994–999.PubMedGoogle Scholar
  51. 51.
    Qian X, Zhu Y, Xu W, Lin Y, 2001 Glucocorticoid receptor and heat shock protein 90 in peripheral blood mononuclear cells from asthmatics. Chin Med J (Engl) 114: 1051–1054.Google Scholar
  52. 52.
    Matysiak M, Makosa B, Walczak A, Selmaj K, 2008 Patients with multiple sclerosis resisted to glucocorticoid therapy: abnormal expression of heat-shock protein 90 in glucocorticoid receptor complex. Mult Scler 14: 919–926.CrossRefPubMedGoogle Scholar
  53. 53.
    Tissing WJ, Meijerink JP, den Boer ML, Brinkhof B, Pieters R, 2005 MRNA expression levels of (co) chaperone molecules of the glucocorticoid receptor are not involved in glucocorticoid resistance in pediatric ALL. Leukemia 19: 727–733.CrossRefPubMedGoogle Scholar

Copyright information

© Hellenic Endocrine Society 2016

Authors and Affiliations

  • Nicolas C. Nicolaides
    • 1
    • 2
  • Agaristi Lamprokostopoulou
    • 2
  • Amalia Sertedaki
    • 1
  • Evangelia Charmandari
    • 1
    • 2
  1. 1.Division of Endocrinology, Metabolism and Diabetes, First Department of PediatricsUniversity of Athens Medical School, ‘Aghia Sophia’ Children’s HospitalAthensGreece
  2. 2.Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational ResearchBiomedical Research Foundation of the Academy of AthensAthensGreece

Personalised recommendations