Advertisement

Hormones

, Volume 13, Issue 2, pp 280–285 | Cite as

Genetic diagnosis of idiopathic hypogonadotrophic hypogonadism: a new point mutation in the KAL2 gene

  • Carmen Entrala-Bernal
  • Cristina Montes-Castillo
  • Maria Jesus Alvarez-Cubero
  • Carmen Gutiérrez-Alcántara
  • Francisco Fernandez-Rosado
  • Esther Martinez-Espín
  • Carolina Sánchez-Malo
  • Piedad Santiago-Fernández
Case report

Abstract

Kallmann Syndrome (KS) is a genetic disease of embryonic development which is characterized by the association of hypogonadotropic hypogonadism (HH) due to a deficit of the gonadotropin-releasing hormone (GnRH) and a hypo/anosmia (including a hypoplasia of the nasal sulcus and agenesis of the olfactory bulbs). Even though it is a genotypically and phenotypically heterogeneous clinical disease, there are some key genes related to KS (KAL1, FGFR1 (KAL2), GNRHR, KISSR1 (GPR54), GNRH1, NELF and PROK2). The aim of this study was to present a case report of a genetic diagnosis of KS linked to the presence of mutations in the FGFR1 (fibroblast growth factor receptor 1, also known as KAL2) gene. This diagnosis was made in a 44-year old female affected by a hypogonadism for which she had received intermittent treatment until she was 30 years old based on the patient’s own decision. The molecular analysis of FGFR1 identified the mutation c. 246_247delAG (p.T82Xfs110) in heterozygosis on exon 3 of the KAL2 gene. This is the first report of this mutation related to idiopathic hypogonadotrophic hypogonadism (IHH).

Key words

Case Genes KAL1 KAL2 Kallmann syndrome Mutation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Trarbach EB, Baptista MTM, Garnies HM, Hackel C, 2005 Molecular analysis of KAL-1, GnRH-R, NELF and EBF2 genes in a series of Kallmann syndrome and normosmic hypogonadotropic hypogonadism patients. J Endocrinol 187: 361–368.CrossRefPubMedGoogle Scholar
  2. 2.
    Quaynor SD, Kim HG, Cappello EM, et al, 2011 The prevalence of digenic mutations in patients with normosmic hypogonadotropic hypogonadism and Kallmann syndrome. Fertil Steril 96: 1424–1430.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
  4. 4.
    Laitinen E, Vaaralahti K, Tommiska J, et al, 2011 Incidence, phenotypic features and molecular genetics of Kallmann syndrome in Finland. 6: doi: 10.1186/1750-1172-6-41.Google Scholar
  5. 5.
    Yu HT, Lee CL, Huang HY, Soong YK, 2012 Successful pregnancy in a woman with Kallmann’s syndrome using human menopausal gonadotropin followed by low-dose human chorionic gonadotropin in the mid-to-late follicular phase. Taiwan J Obstet Gynecol 51: 300–302.CrossRefPubMedGoogle Scholar
  6. 6.
    Cariboni A, Maggi R, 2006 Kallmann’s syndrome, a neuronal migration defect. Cell Mol Life Sci 63: 2512–2526.CrossRefPubMedGoogle Scholar
  7. 7.
    Pitteloud N, Zhang C, Pignatelli D, et al, 2007 Loss-of-function mutation in the prokineticin 2 gene causes Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism. Proc Natl Acad Sci USA 104: 17447–17452.CrossRefPubMedGoogle Scholar
  8. 8.
    Miya K, Shimojima K, Sugawara M, et al, 2012 A de novo interstitial deletion of 8p11.2 including ANK1 identified in a patient with spherocytosis, psychomotor developmental delay, and distinctive facial features. Gene 506: 146–149.CrossRefPubMedGoogle Scholar
  9. 9.
    Oliveira LMB, Seminara SB, Beranova M, et al, 2001 The importance of autosomal genes in Kallmann syndrome: genotype-phenotype correlations and neuroendocrine characteristics. J Clin Endocrinol Metab 86: 1532–1538.PubMedGoogle Scholar
  10. 10.
    Franco B, Guioli S, Pragliola A, et al, 1991 A gene deleted in Kallmann’s syndrome shares homology with neural cell adhesion and axonal path-finding molecules. Nature 353: 529–536.CrossRefPubMedGoogle Scholar
  11. 11.
    Dodé C, Levilliers J, Dupont JM, et al, 2003 Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome. Nat Genet 33: 463–465.CrossRefPubMedGoogle Scholar
  12. 12.
    Falardeau J, Chung WCJ, Beenken A, et al, 2008 Decreased FGF8 signaling causes deficiency of gonado-tropin-releasing hormone in humans and mice. J Clin Invest 118: 2822–2831.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kim HG, Ahn Jw, Kurth I, et al, 2010 WDR11, a WD protein that interacts with transcription factor EMX1, is mutated in idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Am J Hum Genet 87: 465–479.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Bouligand J, Ghervan C, Tello JA, et al, 2009 Isolated familial hypogonadotropic hypogonadism and a GNRH1 mutation. N Engl J Med 360: 2742–2748.CrossRefPubMedGoogle Scholar
  15. 15.
    Pitteloud N, Meysing A, Quinton R, et al, 2006 Mutations in fibroblast growth factor receptor 1 cause Kallmann syndrome with a wide spectrum of reproductive phenotypes. Mol Cell Endocrinol 254–255: 60–69.CrossRefPubMedGoogle Scholar
  16. 16.
    Novo A, Guerra IC, Rocha F, et al, 2012 Kallmann syndrome in a female adolescent: A new mutation in the FGFR1 gene. BMJ Case Rep 2012: doi: 10.1136/bcr-12-2011-5380.Google Scholar
  17. 17.
    Gutiérrez-Amavizca BE, Figuera LE, Orozco-Castel-lanos R, 2012 Current genetic issues and phenotypic variants in Kallmann syndrome. Rev Med Inst Mex Seguro Soc 50: 157–161.PubMedGoogle Scholar
  18. 18.
    Versiani BR, Trarbach E, Koenigkam-Santos M, et al, 2006 Clinical assessment and molecular analysis of GnRHR and KAL1 genes in males with idiopathic hypogonadotrophic hypogonadism. Clin Endocrinol (Oxf) 66: 173–179.CrossRefGoogle Scholar
  19. 19.
    Dodé C, Teixeira L, Levilliers J, et al, 2006 Kallmann syndrome: mutations in the genes encoding prokineticin-2 and prokineticin receptor-2. PLoS Genet 2: e175.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Petit C, 1993 Molecular basis of the X-chromosome-linked Kallmann’s syndrome. Trends Endocrinol Metab 4: 8–13.CrossRefPubMedGoogle Scholar
  21. 21.
    Belachew D, Sperling MA, 2012 A Novel FGFR1 Gene Mutation Causing Kallmann Syndrome. Endocr Rev, (03_MeetingAbstracts) Vol. 33.Google Scholar
  22. 22.
    Koika V, Varnavas P, Valavani H, et al, 2012 Comparative functional analysis of two Fibroblast Growth Factor Receptor 1 (FGFR1) mutations affecting the same residue (R254W and R254Q) in Isolated Hypogonadotropic Hypogonadism (IHH). Gene 516: 146–151.CrossRefPubMedGoogle Scholar
  23. 23.
    Albuisson J, Pêcheux C, Carel JC, et al, 2004 Kallmann syndrome: 14 novel mutations in KAL1 and FGFR1 (KAL2). Hum Mutat 25: 98–99.CrossRefGoogle Scholar
  24. 24.
    Huhtaniemi IT, 2002 The role of mutations affecting gonadotrophin secretion and action in disorders of pubertal development. Best Pract Res Clin Endocrinol Metab 16: 123–138.CrossRefPubMedGoogle Scholar
  25. 25.
    Au MG, Crowley WF Jr, Buck CL, 2011 Genetic counseling for isolated GnRH deficiency. Mol Cell Endocrinol 346: 102–109.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Hellenic Endocrine Society 2014

Authors and Affiliations

  • Carmen Entrala-Bernal
    • 1
  • Cristina Montes-Castillo
    • 2
  • Maria Jesus Alvarez-Cubero
    • 3
  • Carmen Gutiérrez-Alcántara
    • 2
  • Francisco Fernandez-Rosado
    • 1
  • Esther Martinez-Espín
    • 1
  • Carolina Sánchez-Malo
    • 2
  • Piedad Santiago-Fernández
    • 2
  1. 1.LORGEN G.P., PTCiencias de la Salud - BICGranadaSpain
  2. 2.UGC Endocrinología y NutriciónComplejo Hospitalario de JaénJaénSpain
  3. 3.Laboratory of Genetic Identification, Department of Legal Medicine, Toxicology and Physical Anthropology, Faculty of MedicineUniversity of GranadaGranadaSpain

Personalised recommendations