Advertisement

Hormones

, Volume 13, Issue 1, pp 24–37 | Cite as

The role of notch signaling in bone development and disease

  • Maria P. Yavropoulou
  • John G. Yovos
Review

Abstract

During the last decade a considerable amount of data have been accumulated regarding the role of intracellular signaling pathways in the pathogenesis of human diseases. One of these, Notch signaling, well known for its significance in cellular development and tissue morphogenesis, has been increasingly recognized as a crucial participant in the pathogenetic mechanisms underlying certain skeletal disorders. A better understanding of the biology and regulation of this multifaceted pathway is considered an important step towards clarification of the pathogenesis of various skeletal diseases and the development of novel targets for therapeutic purposes.

Key words

Bone Cartilage Notch signaling Osteoblasts Osteoclasts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Artavams-Tsakonas S, Rand MD, Lake RJ, 1999 Notch signaling: cell fate control and signal integration in development. Science 284: 770–776.CrossRefGoogle Scholar
  2. 2.
    Lewis J, 1998 Notch signalling and the control of cell fate choices in vertebrates. Semin Cell Dev Biol 9: 583–589.CrossRefPubMedGoogle Scholar
  3. 3.
    Bray S, 1998 Notch signalling in Drosophila: three ways to use a pathway. Semin Cell Dev Biol 9: 591–597.CrossRefPubMedGoogle Scholar
  4. 4.
    Joutel A, Tournier-Lasserve E, 1998 Notch signalling pathway and human diseases. Semin Cell Dev Biol 9: 619–625.CrossRefPubMedGoogle Scholar
  5. 5.
    Schweisguth F, 2004 Regulation of notch signaling activity. Curr Biol 14: R129–138.CrossRefPubMedGoogle Scholar
  6. 6.
    Ehebauer M, Hayward P, Arias AM, 2006 Notch, a universal arbiter of cell fate decisions. Science 314: 1414–1415.CrossRefPubMedGoogle Scholar
  7. 7.
    Ehebauer M, Hayward P, Martinez-Arias A, 2006 Notch signaling pathway. Sci STKE 2006: cm7.Google Scholar
  8. 8.
    Kopan R, Ilagan MX, 2009 The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137: 216–233.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Vodovar N, Schweisguth F, 2008 Functions of O-fucosyltransferase in Notch trafficking and signaling: towards the end of a controversy? J Biol 7: 7.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Zhang XP, Zheng G, Zou L, et al, 2008 Notch activation promotes cell proliferation and the formation of neural stem cell-like colonies in human glioma cells. Mol Cell Biochem 307: 101–108.CrossRefPubMedGoogle Scholar
  11. 11.
    D’Souza B, Miyamoto A, Weinmaster G, 2008 The many facets of Notch ligands. Oncogene 27: 5148–5167.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ilagan MX, Kopan R, 2007 Snapshot: notch signaling pathway. Cell 128: 1246.CrossRefPubMedGoogle Scholar
  13. 13.
    Haines N, Irvine KD, 2003 Glycosylation regulates Notch signalling. Nat Rev Mol Cell Biol 4: 786–797.CrossRefPubMedGoogle Scholar
  14. 14.
    Rampal R, Luther KB, Haltiwanger RS, 2007 Notch signaling in normal and disease states: possible therapies related to glycosylation. Curr Mol Med 7: 427–445.CrossRefPubMedGoogle Scholar
  15. 15.
    Stanley P, 2007 Regulation of Notch signaling by glycosylation. Curr Opin struct Biol 17: 530–535.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sato T, Diehl TS, Narayanan S, et al, 2007 Active gamma-secretase complexes contain only one of each component. J Biol Chem 282: 33985–33993.CrossRefPubMedGoogle Scholar
  17. 17.
    Nakashima K, de Crombrugghe B, 2003 Transcriptional mechanisms in osteoblast differentiation and bone formation. Trends Genet 19: 458–466.CrossRefPubMedGoogle Scholar
  18. 18.
    Karsenty G, Wagner EF, 2002 Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2: 389–406.CrossRefPubMedGoogle Scholar
  19. 19.
    Dong Y, Jesse AM, Kohn A, et al, 2010 RBPjkappa-dependent Notch signaling regulates mesenchymal progenitor cell proliferation and differentiation during skeletal development. Development 137: 1461–1471.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Logan M, Martin JF, Nagy A, Lobe C, Olson EN, Tabin CJ, 2002 Expression of Cre Recombinase in the developing mouse limb bud driven by a Prxl enhancer. Genesis 33: 77–80.CrossRefPubMedGoogle Scholar
  21. 21.
    Hilton MJ, Tu X, Wu X, et al, 2008 Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med 14: 306–314.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lefebvre V, Huang W, Harley VR, Goodfellow PN, de Crombrugghe B, 1997 SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene. Mol Cell Biol 17: 2336–2346.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Karlsson C, Lindahl A, 2009 Notch signaling in chondrogenesis. Int Rev Cell Mol Biol 275: 65–88.CrossRefPubMedGoogle Scholar
  24. 24.
    Grogan SP, Olee T, Hiraoka K, Lotz MK, 2008 Repression of chondrogenesis through binding of notch signaling proteins HES-1 and HEY-1 to N-box domains in the COL2A1 enhancer site. Arthritis Rheum 58: 2754–2763.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Chen S, Tao J, Bae Y, et al, 2013 Notch gain of function inhibits chondrocyte differentiation via Rbpj-dependent suppression of sox9. J Bone Miner Res 28: 649–659.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Mead TJ, Yutzey KE, 2009 Notch pathway regulation of chondrocyte differentiation and proliferation during appendicular and axial skeleton development. Proc Natl Acad Sci U S A 106: 14420–14425.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kohn A, Dong Y, Mirando AJ, et al, 2012 Cartilage-specific RBPjkappa-dependent and -independent Notch signals regulate cartilage and bone development. Development 139: 1198–1212.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Zanotti S, Smerdel-Ramoya A, Stadmeyer L, Durant D, Radtke F, Canalis E, 2008 Notch inhibits osteoblast differentiation and causes osteopenia. Endocrinology 149: 3890–3899.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Engin F, Yao Z, Yang T, et al, 2008 Dimorphic effects of Notch signaling in bone homeostasis. Nat Med 14: 299–305.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Canalis E, Parker K, Feng JQ, Zanotti S, 2013 Osteoblast lineage-specific effects of notch activation in the skeleton. Endocrinology 154: 623–634.CrossRefPubMedGoogle Scholar
  31. 31.
    Kalajzic I, Kalajzic Z, Kaliterna M, et al, 2002 Use of type I collagen green fluorescent protein transgenes to identify subpopulations of cells at different stages of the osteoblast lineage. J Bone Miner Res 17: 15–25.CrossRefPubMedGoogle Scholar
  32. 32.
    Kalajzic I, Staal A, Yang WP, et al, 2005 Expression profile of osteoblast lineage at defined stages of differentiation. J Biol Chem 280: 24618–24626.CrossRefPubMedGoogle Scholar
  33. 33.
    Zamurovic N, Cappellen D, Rohner D, Susa M, 2004 Coordinated activation of notch, Wnt, and transforming growth factor-beta signaling pathways in bone morphogenic protein 2-induced osteogenesis. Notch target gene Hey1 inhibits mineralization and Runx2 transcriptional activity. J Biol Chem 279: 37704–37715.CrossRefPubMedGoogle Scholar
  34. 34.
    Sciaudone M, Gazzerro E, Priest L, Delany AM, Canalis E, 2003 Notch 1 impairs osteoblastic cell differentiation. Endocrinology 144: 5631–5639.CrossRefPubMedGoogle Scholar
  35. 35.
    Tezuka K, Yasuda M, Watanabe N, et al, 2002 Stimulation of osteoblastic cell differentiation by Notch. J Bone Miner Res 17: 231–239.CrossRefPubMedGoogle Scholar
  36. 36.
    Nobta M, Tsukazaki T, Shibata Y, et al, 2005 Critical regulation of bone morphogenetic protein-induced osteoblastic differentiation by Delta1/Jagged1-activated Notch1 signaling. J Biol Chem 280: 15842–15848.CrossRefPubMedGoogle Scholar
  37. 37.
    Deregowski V, Gazzerro E, Priest L, Rydziel S, Canalis E, 2006 Notch 1 overexpression inhibits osteoblastogenesis by suppressing Wnt/beta-catenin but not bone morphogenetic protein signaling. J Biol Chem 281: 6203–6210.CrossRefPubMedGoogle Scholar
  38. 38.
    McLarren KW, Lo R, Grbavec D, Thirunavukkarasu K, Karsenty G, Stifani S, 2000 The mammalian basic helix loop helix protein HEs-1 binds to and modulates the transactivating function of the runt-related factor Cbfa1. J Biol Chem 275: 530–538.CrossRefPubMedGoogle Scholar
  39. 39.
    Shen Q, Christakos S, 2005 The vitamin D receptor, Runx2, and the Notch signaling pathway cooperate in the transcriptional regulation of osteopontin. J Biol Chem 280: 40589–40598.CrossRefPubMedGoogle Scholar
  40. 40.
    Zhang Y, Lian JB, Stein JL, van Wijnen AJ, Stein GS, 2009 The Notch-responsive transcription factor Hes-1 attenuates osteocalcin promoter activity in osteoblastic cells. J Cell Biochem 108: 651–659.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Teitelbaum SL, 2007 Osteoclasts: what do they do and how do they do it? Am J Pathol 170: 427–435.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Bai S, Kopan R, Zou W, et al, 2008 NOTCH1 regulates osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblast lineage cells. J Biol Chem 283: 6509–6518.CrossRefPubMedGoogle Scholar
  43. 43.
    Yamada T, Yamazaki H, Yamane T, et al, 2003 Regulation of osteoclast development by Notch signaling directed to osteoclast precursors and through stromal cells. Blood 101: 2227–2234.CrossRefPubMedGoogle Scholar
  44. 44.
    Fukushima H, Nakao A, Okamoto F, et al, 2008 The association of Notch2 and NF-kappaB accelerates RANKL-induced osteoclastogenesis. Mol Cell Biol 28: 6402–6412.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Zanotti S, Smerdel-Ramoya A, Canalis E, 2011 HES1 (hairy and enhancer of split 1) is a determinant of bone mass. J Biol Chem 286: 2648–2657.CrossRefPubMedGoogle Scholar
  46. 46.
    Gucev ZS, Tasic V, Pop-Jordanova N, et al, 2010 Autosomal dominant spondylocostal dysostosis in three generations of a Macedonian family: Negative mutation analysis of DLL3, MESP2, HES7, and LFNG. Am J Med Genet A 152A: 1378–1382.PubMedGoogle Scholar
  47. 47.
    Lavy NW, Palmer CG, Merritt AD, 1966 A syndrome of bizarre vertebral anomalies. J Pediatr 69: 1121–1125.CrossRefPubMedGoogle Scholar
  48. 48.
    Bulman MP, Kusumi K, Frayling TM, et al, 2000 Mutations in the human delta homologue, DLL3, cause axial skeletal defects in spondylocostal dysostosis. Nat Genet 24: 438–441.CrossRefPubMedGoogle Scholar
  49. 49.
    Saga Y, Hata N, Koseki H, Taketo MM, 1997 Mesp2: a novel mouse gene expressed in the presegmented mesoderm and essential for segmentation initiation. Genes Dev 11: 1827–1839.CrossRefPubMedGoogle Scholar
  50. 50.
    Makino Y, Takahashi Y, Tanabe R, et al, 2013 Spatiotemporal disorder in the axial skeleton development of the Mesp2-null mouse: a model of spondylocostal dysostosis and spondylothoracic dysostosis. Bone 53: 248–258.CrossRefPubMedGoogle Scholar
  51. 51.
    Sparrow DB, Chapman G, Wouters MA, et al, 2006 Mutation of the LUNATIC FRINGE gene in humans causes spondylocostal dysostosis with a severe vertebral phenotype. Am J Hum Genet 78: 28–37.CrossRefPubMedGoogle Scholar
  52. 52.
    Dunwoodie SL, 2009 Reprint of mutation of the fucose-specific beta1,3 N-acetylglucosaminyltransferase LFNG results in abnormal formation of the spine. Biochim Biophys Acta 1792: 862–873.PubMedGoogle Scholar
  53. 53.
    Dunwoodie SL, 2009 Mutation of the fucose-specific beta1,3 N-acetylglucosaminyltransferase LFNG results in abnormal formation of the spine. Biochim Biophys Acta 1792: 100–111.CrossRefPubMedGoogle Scholar
  54. 54.
    Zhang N, Norton CR, Gridley T, 2002 Segmentation defects of Notch pathway mutants and absence of a synergistic phenotype in lunatic fringe/radical fringe double mutant mice. Genesis 33: 21–28.CrossRefPubMedGoogle Scholar
  55. 55.
    Kusumi K, Mimoto MS, Covello KL, Beddington RS, Krumlauf R, Dunwoodie SL, 2004 Dll3 pudgy mutation differentially disrupts dynamic expression of somite genes. Genesis 39: 115–121.CrossRefPubMedGoogle Scholar
  56. 56.
    Sparrow DB, Guillen-Navarro E, Fatkin D, Dunwoodie SL, 2008 Mutation of Hairy-and-Enhancer-of-split-7 in humans causes spondylocostal dysostosis. Hum Mol Genet 17: 3761–3766.CrossRefPubMedGoogle Scholar
  57. 57.
    Sparrow DB, Sillence D, Wouters MA, Turnpenny PD, Dunwoodie SL, 2010 Two novel missense mutations in HAIRY-AND-ENHANCER-OF-SPLIT-7 in a family with spondylocostal dysostosis. Eur J Hum Genet 18: 674–679.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Alagille D, Estrada A, Hadchouel M, Gautier M, Odievre M, Dommergues JP, 1987 Syndromic paucity of interlobular bile ducts (Alagille syndrome or arteriohepatic dysplasia): review of 80 cases. J Pediatr 110: 195–200.CrossRefPubMedGoogle Scholar
  59. 59.
    Morrissette JD, Colliton RP, Spinner NB, 2001 Defective intracellular transport and processing of JAG1 missense mutations in Alagille syndrome. Hum Mol Genet 10: 405–413.CrossRefPubMedGoogle Scholar
  60. 60.
    Kamath BM, Bauer RC, Loomes KM, et al, 2012 NOTCH2 mutations in Alagille syndrome. J Med Genet 49: 138–144.CrossRefPubMedGoogle Scholar
  61. 61.
    McCright B, Lozier J, Gridley T, 2002 A mouse model of Alagille syndrome: Notch2 as a genetic modifier of Jag1 haploinsufficiency. Development 129: 1075–1082.PubMedGoogle Scholar
  62. 62.
    Humphreys R, Zheng W, Prince LS, et al, 2012 Cranial neural crest ablation of Jagged1 recapitulates the craniofacial phenotype of Alagille syndrome patients. Hum Mol Genet 21: 1374–1383.CrossRefPubMedGoogle Scholar
  63. 63.
    Emerick KM, Rand EB, Goldmuntz E, Krantz ID, Spinner NB, Piccoli DA, 1999 Features of Alagille syndrome in 92 patients: frequency and relation to prognosis. Hepatology 29: 822–829.CrossRefPubMedGoogle Scholar
  64. 64.
    Riely CA, Cotlier E, Jensen PS, Klatskin G, 1979 Arteriohepatic dysplasia: a benign syndrome of intrahepatic cholestasis with multiple organ involvement. Ann Intern Med 91: 520–527.CrossRefPubMedGoogle Scholar
  65. 65.
    Olsen IE, Ittenbach RF, Rovner AJ, et al, 2005 Deficits in size-adjusted bone mass in children with Alagille syndrome. J Pediatr Gastroenterol Nutr 40: 76–82.CrossRefPubMedGoogle Scholar
  66. 66.
    Kung AW, Xiao SM, Cherny S, et al, 2010 Association of JAG1 with bone mineral density and osteoporotic fractures: a genome-wide association study and follow-up replication studies. Am J Hum Genet 86: 229–239.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Simpson MA, Irving MD, Asilmaz E, et al, 2011 Mutations in NOTCH2 cause Hajdu-Cheney syndrome, a disorder of severe and progressive bone loss. Nat Genet 43: 303–305.CrossRefPubMedGoogle Scholar
  68. 68.
    Antoniades K, Kaklamanos E, Kavadia S, Hatzistilianou M, Antoniades V, 2003 Hajdu-Cheney syndrome (acroosteolysis): a case report of dental interest. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 95: 725–731.CrossRefPubMedGoogle Scholar
  69. 69.
    Brennan AM, Pauli RM, 2001 Hajdu—Cheney syndrome: evolution of phenotype and clinical problems. Am J Med Genet 100: 292–310.CrossRefPubMedGoogle Scholar
  70. 70.
    Udell J, Schumacher HR, Jr., Kaplan F, Fallon MD, 1986 Idiopathic familial acroosteolysis: histomorphometric study of bone and literature review of the Hajdu-Cheney syndrome. Arthritis Rheum 29: 1032–1038.CrossRefPubMedGoogle Scholar
  71. 71.
    Brown DM, Bradford DS, Gorlin RJ, et al, 1976 The acro-osteolysis syndrome: Morphologic and biochemical studies. J Pediatr 88: 573–580.CrossRefPubMedGoogle Scholar
  72. 72.
    Galli-Tsinopoulou A, Kyrgios I, Giza S, Giannopoulou EM, Maggana I, Laliotis N, 2012 Two-year cyclic infusion of pamidronate improves bone mass density and eliminates risk of fractures in a girl with osteoporosis due to Hajdu-Cheney syndrome. Minerva Endocrinol 37: 283–289.PubMedGoogle Scholar
  73. 73.
    Weng AP, Ferrando AA, Lee W, et al, 2004 Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306: 269–271.CrossRefPubMedGoogle Scholar
  74. 74.
    Leong KG, Karsan A, 2006 Recent insights into the role of Notch signaling in tumorigenesis. Blood 107: 2223–2233.CrossRefPubMedGoogle Scholar
  75. 75.
    Engin F, Bertin T, Ma O, et al, 2009 Notch signaling contributes to the pathogenesis of human osteosarcomas. Hum Mol Genet 18: 1464–1470.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Zhang P, Yang Y, Zweidler-McKay PA, Hughes DP, 2008 Critical role of notch signaling in osteosarcoma invasion and metastasis. Clin Cancer Res 14: 2962–2969.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Zhang Z, Wang H, Ikeda S, et al, 2010 Notch3 in human breast cancer cell lines regulates osteoblast-cancer cell interactions and osteolytic bone metastasis. Am J Pathol 177: 1459–1469.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Sethi N, Dai X, Winter CG, Kang Y, 2011 Tumor-derived JAGGED1 promotes osteolytic bone metastasis of breast cancer by engaging notch signaling in bone cells. Cancer Cell 19: 192–205.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Noguera-Troise I, Daly C, Papadopoulos NJ, et al, 2006 Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature 444: 1032–1037.CrossRefPubMedGoogle Scholar
  80. 80.
    Nickoloff BJ, Osborne BA, Miele L, 2003 Notch signaling as a therapeutic target in cancer: a new approach to the development of cell fate modifying agents. Oncogene 22: 6598–6608.CrossRefPubMedGoogle Scholar

Copyright information

© Hellenic Endocrine Society 2014

Authors and Affiliations

  1. 1.Division of Endocrinology and Metabolism, Laboratory of Molecular Endocrinology, 1st Department of Medicine, AHEPA University HospitalAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations