Interceram - International Ceramic Review

, Volume 66, Issue 5, pp 157–165 | Cite as

Assessment of the Application of a Ca-Looping Cycle for CO2 Capture in an Egyptian Cement Kiln Plant

  • L. M. FaragEmail author
Building Materials


The mathematical model of mass and heat balance around a carbonator and calciner of a calcium looping cycle for capture of CO2 has been established. Such a model has been applied to evaluate the thermal energy requirement for the capture of CO2 evolved with preheater exit gases of an Egyptian cement kiln plant. Potentials for heat recovery from the outlet heat flows of the system have been assessed. The kiln plant operates with 15% kiln gas by pass ratio; the specific heat consumption attains 3151 kJ/kg of clinker. The entire CO2 emitted from the kiln plant attains about 0.7 kg CO2/kg of clinker or 4427.6 t CO2/d CO2/d; most of this (≈ 98%) evolves with the preheater gases.

For the mass ratio of absorbant/CO2 ranging from stoichiometric (1.27) to 5, 100% CO2 capture degree and zero purged flow, heat consumption in the calciner has been estimated to be in range 5629–6790 kJ/kg CO2, corresponding to 3873–4671 kJ/kg of clinker. Fuel consumption would increase by about 20% for every kg purged CaCO3. It has been estimated that heat recovery from the cycle, e.g., through cooling of the outlet gas streams from 650 or 950°C to 150°C with 70% efficiency attains 2000–3442 kJ/kg of clinker, which represents more than 73% of the fuel consumption in the calciner. The increase of efficiency for heat recovery is accompanied by much regain of heat and better fuel economy.


carbonator calciner energy requirement heat recovery calcium carbonate calcium oxide purged flow 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    IEA, Carbon emission reductions up to 2050. In: Cement Technology Roadmap (2009)Google Scholar
  2. [2]
    CW Group, Global cement volume forecast report, (2012)Google Scholar
  3. [3]
    WWF, Blueprint for the cement industry: How to turn around the trend of cement related emissions in the developing world, (2008)Google Scholar
  4. [4]
    IEA Clean Coal Center, CO2 abatement in the cement industry, (2011)Google Scholar
  5. [5]
    Hasanbeige, A., Price, L., Lin, E.: Emerging energy efficiency and CO2 emission-reduction technologies for cement and concrete production: A technical review. Renewable and Sustainable Energy Rev. 16 (2012) 6220–6238CrossRefGoogle Scholar
  6. [6]
    IEA, CO2 Capture in the cement industry, July (2008)Google Scholar
  7. [7]
    Hassan, S.M.N.: Techno-economic study of CO2 capture process for cement plants. Chemical Engineering. University of Waterloo, Canada (Master’s Thesis) (2005)Google Scholar
  8. [8]
    Dong, R.F., Lu, H.F., Yu, Y.S., Zhang, Z.X.: A feasible process for simultaneous removal of CO2, SO2 and NO2 in the cement industry by NH3 scrubbing. Appl. Energy 97 (2012) 185–191CrossRefGoogle Scholar
  9. [9]
    ECRA, Technical report: ECRA CCS Project — Report about phase II (2009)Google Scholar
  10. [10]
    Bosage, A., Masek, O., Oakey, J.E.: CO2 capture technologies for cement industry. Energy Procedia 1 (2009) [1] 133–140CrossRefGoogle Scholar
  11. [11]
    Zeman, F.S., Lackner, K.S.: The zero emission. International Cement Review, Tradeship Publications Ltd., UK, 2006Google Scholar
  12. [12]
    Shimizu, T., Hirama, T., Hosoda, H., Kitan, K., Inagaki, M., Tejima, K.: A twin fluidized bed reactor for removal of CO2 from combustion processes. Chem. Eng. Res. and Design 77 Part A (1999) 62–68CrossRefGoogle Scholar
  13. [13]
    Abandes, J.C., et al.: Capture of CO2 from combustion gases in a fluidized bed of CaO. AIChE J. 50 (1999) [7] 1614–1622CrossRefGoogle Scholar
  14. [14]
    Martinez, L., et al.: Integration of calcium looping system for CO2 capture in existing power. AIchE J. 57 (2011) 2599–2607CrossRefGoogle Scholar
  15. [15]
    Zhao, M., et al.: Review of techno-economic models for the retrofitting of conventional pulverized — coal power plants for post-combustion capture (PCC) of CO2. Energy & Environ. Sci. 6 (2013) 25–40CrossRefGoogle Scholar
  16. [16]
    Alonso, M.: Carbon dioxide capture from combustion flue gases with a calcium oxide chemical loop. Experimental results and process development. Inter. J. Greenhouse Gas Control 4 (2010) 167–173CrossRefGoogle Scholar
  17. [17]
    Charitos, A. et al.: Parametric investigation of the calcium looping process for CO2 capture in a 10 kW-th dual fluidized bed. Inter.J. Greenhouse Gas Control 4 (2010) 776–764CrossRefGoogle Scholar
  18. [18]
    Rodriguez, N., et al.: Analysis of a process for capturing the CO2 resulting for pre-calcination of limestone in a cement plant. Ind. & Eng. Chem. Res. 50 (2011) [4] 2126–2132CrossRefGoogle Scholar
  19. [19]
    Arias, B., et al.: Demonstration of steady state CO2 capture in a 1.7 MWth calcium looping. Inter. J. Greenhouse Gas Control 18 (2013) 237–245CrossRefGoogle Scholar
  20. [20]
    Plotz, S., et al.: First carbonate looping experiments with 1 MWth test facility consisting of two interconnected CFBs. In: Proc. 21st Inter. Conf. on Fluidized Bed Combustion, Naples, Italy (2012) 421–428Google Scholar
  21. [21]
    Dieter, H., et al.: The 200 kW-th dual fluidized bed calcium looping pilot plant for efficient CO2 capture: Plant operating experiences and results. Naples, Italy, Proceeding of the 21st International Conference on Fluidized Bed Combustion (2012) 397–404Google Scholar
  22. [22]
    Brdicka, R.: Grundlagen der physikalischen Chemie, VEB Deutscher Verlag der Wissenschaften, Berlin (1961) 397Google Scholar
  23. [23]
    Johnston, J.: The mechanism of the thermal decomposition of calcium carbonate. J. Am. Chem. Soc. 32 (1910) 983CrossRefGoogle Scholar
  24. [24]
    Perry, J.H.: Chemical Engineers Handbook. MC-Hill Co., New York, ISBN 0-07-Y66482-X (1963) 3–69Google Scholar
  25. [25]
    Abanades, J.C., Alorso, M., Rodeiguez, B., Gonzalez, B., Grase, G., Murillo, R.: Capturing CO2 from combustion flue gases with a carbonation calcination loop. Experimental results and process development. Energy Procedia 1 (2009) 1147–1154CrossRefGoogle Scholar
  26. [26]
    Hawthorne, C., et al.: Simulation of the carbonate looping power cycle. Energy Procedia 1 (2009) 1387–1394CrossRefGoogle Scholar
  27. [27]
    Ozcan, D.C., Hyungwoong, A., Brandani, S.: Process integration of a Ca-looping capture process in cement plant. Inter. J. Greenhouse Gas Control 19 (2013) 530–540CrossRefGoogle Scholar
  28. [28]
    Romano, M.C., et al.: Process simulation of Ca-looping processes: Review and guidelines. Energy Procedia 37 (2013) 142–150CrossRefGoogle Scholar
  29. [29]
    Rodriguez, N., Alonso, M., Grasa, G., Abandes, J.: Heat requirements in a calciner of CaCO3 in a CO2 capture system using CaO. Chem. Eng. J. doI: 10.1016/j.Cj, 2007.06.005.Google Scholar
  30. [30]
    Romeo, L.M., Lara, Y., Lisbona, P., Escosa, J.M.: Optimizing make-up flow in a CO2 capture system using CaO. Chem. Eng. J. doi: 10.1016/i. Cej.2008 7 (2008)Google Scholar
  31. [31]
    Teleska, A., et al.: Spent limestone sorbant from calcium looping cycle as a raw material for the cement industry. Fuel 118 (2014) 202–205CrossRefGoogle Scholar
  32. [32]
    Farag, L.M., Ghorab, H., El Nemr, A.: Evaluation of the operational behaviour of an egyptian cement dry process kiln plant. J. Appl. Sci. Res. 9 (2013) [7] 4245–4254Google Scholar
  33. [33]
    Heiligensteadt, H.W.: Wärmetechnische Rechnungen für Industrieöfen, Verlag Stahleisen mbH, Düsseldorf (1966)Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Ceramics DepartmentNational Research CentreDokki, CairoEgypt

Personalised recommendations