Refractory Monolithics versus Shaped Refractory Products

  • F. Tomšů
  • S. Palčo


The share of the world’s gross refractory production due to monolithics has progressively increased. This trend can be attributed primarily to improved properties of new products and the introduction of new installation techniques. Development of advanced refractory castables is briefly described and the properties of monolithic refractories are compared with the properties of similar shaped products. The use of monolithics as a substitute for refractory bricks in different industrial high-temperature processes is discussed.


advanced monolithic refractories shaped refractories installation techniques global trends 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1] Global Refractories Market — Segmented by Product Type, End-User Industry, and Geography — Trends and Forecasts (2015-2020).
  2. [2]
    FREEDONIA report 2013: World Refractories to 2016 — Industry Market Research, Market Share, Market Size, Sales, Demand Forecast, Market Leaders, Company Profiles, Industry Trends.Google Scholar
  3. [3]
    World Steel Association — statistics.Google Scholar
  4. [4]
    Roberts, J.: Outlook for refractory end-user markets to 2020. Proceedings: 57th Internat. Colloq. on Refractories, Aachen (2014) 228–230Google Scholar
  5. [5]
    Gerotte, M.V., et al.: Zero-cement high alumina castables. Amer. Ceram. Soc. Bull. 79 (2000) [9] 75–83Google Scholar
  6. [6]
    Wöhrmeyer, C., et al.: Novel Calcium Magnesium Aluminate Bonded Castables For Steel And Foundry Ladles. Proceedings UNITECR 2013, Victoria, Canada (2013) 1031–1036CrossRefGoogle Scholar
  7. [7]
    Hongo, Y.: ρ-Alumina bonded castable refractories. Taikabutsu Overseas 9 (1989) [1] 35–38Google Scholar
  8. [8]
    Racher, R.P., et al.: Improvements in workability behaviour of calcia-free hydratable alumina binders. Proceedings: UNITECR’05, Orlando (2005)Google Scholar
  9. [9]
    Myhre, B., et al.: Castables with MgO-SiO2-Al2O3 as bond phase. IRMA Journal (2001) [4] 67–72Google Scholar
  10. [10]
    Luz, A.P., et al.: High-alumina phosphate bonded refractory castables: Al(OH)3 sources and their effects. Ceramics Internat. 41 (2015) [7] 9041–9050CrossRefGoogle Scholar
  11. [11]
    Ghosh, S.: Microstructures of refractory castables prepared with sol-gel additives. Ceramics Internat. 24 (2003) 671–677CrossRefGoogle Scholar
  12. [12]
    Ulbricht, J., Tomšů, F.: Bonding systems for SiC-containing refractory castables. Proceedings of the 15th Conference on refractory castables. Praha (2005) 51–58Google Scholar
  13. [13]
    Ismael, M.R., et al.: Colloidal Silica Nanostructured as a Binder for Refractory Castables. Refractories Applications and News 11 (2006) [4] 16–20Google Scholar
  14. [14]
    Shicano, H., et al.: Roll of silica flour in low cement castable. Taikabutsu Overseas 10 (1990) [1] 17–22Google Scholar
  15. [15]
    Kriechbaum, G.W., et al.: The influence of SiO2 and spinel on the hot properties of high-alumina low-cement castables. Proceedings: 37. Intern. Colloq. on Refractories, Aachen (1994) 150–159Google Scholar
  16. [16]
    Almatis: Alcoa Product Data, Refractory Matrix Brochure (2004)Google Scholar
  17. [17]
    Evangelista, P.C., et al.: Control of formulation and optimization of self-flow castables based on pure calcium aluminates. Refractories Application (2002) [2] 14–18Google Scholar
  18. [18]
    Büchel, G., et al.: E-SY Pump — The new solution for pumpability of silica free high performance tabular alumina and spinel castables. Proceedings: 47th Intern. Colloq. on Refractories, Aachen (2004) 87–90Google Scholar
  19. [19]
    ALCOA Product Data: Dispersing Aluminas (2004)Google Scholar
  20. [20]
    Kobayashi, T., et al.: Optimization of PVA fiber explosion control of refractory castables. Proceedings UNITECR 2009, Sao Paulo, Doc. 127Google Scholar
  21. [21]
    Cutard, T., et al.: Thermomechanical behavior of fiber reinforced refractory castables. Proceedings UNITECR 2009, Sao Paulo, Doc. 045Google Scholar
  22. [22]
    Web-Janich, M., et al.: High temperature insulating refractory monolithics based on microporous aggregates. Proceedings: UNITECR’99, Berlin (1999) 177–180Google Scholar
  23. [23]
    Van Garsel, D., et al.: New insulating raw material for high-temperature refractories. Proceedings of the 13th Conference on refractory castables, Praha (1998) 24–32Google Scholar
  24. [24]
    Routschka, G.: Refractory Materials — design, properties, testing. (2008)Google Scholar
  25. [25]
    Yaxiong, Li, et al.: The relationship between the pore size distribution and the thermo-mechanical properties of high alumina refractory castables. Internat. J. of Materials Research 107 (2016) [3]Google Scholar
  26. [26]
    Staroň, J., Tomšů, F.: Refractory materials — production, properties and application. Slovmag (2000) (in Slovak)Google Scholar
  27. [27]
    Miyawaki, M., et al.: Effect of materials and pore diameter control on the Al-penetration resistance of castables. Taikabutsu Overseas 20 (2000) [2] 115–120Google Scholar
  28. [28]
    Tomšů F., Adamovič, A.: Comportement thermoméchanique des matériaux réfractaires pour revêtments monolithiques. Bull. Soc. Franç. Céram. (1973) 98Google Scholar
  29. [29]
    Czech Silicate Society: Refractory materials, Part 8: Application of refractory materials. (in Czech), Czech Silicate Society (2016)Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2017

Authors and Affiliations

  • F. Tomšů
  • S. Palčo

There are no affiliations available

Personalised recommendations