Advertisement

Interceram - International Ceramic Review

, Volume 65, Issue 6–7, pp 226–231 | Cite as

Corrosion Mechanism of Foamed Slag on the Lightweight Corundum-Spinel Castable

  • Pengfei Lian
  • Ao Huang
  • Huazhi Gu
  • Lvping Fu
  • Shuangshuang Wang
Refractories

Abstract

Development of lightweight linings for metallurgical furnaces is an important research direction in the development of refractory materials. In the steelmaking process, slag foaming is a common phenomenon, and it usually plays a positive role. However, because of the reactions between refractories and slag, the corrosion of wear lining refractories is not only related to the safety and stable operation of high-temperature furnaces but also affects steel quality. Foamed slag is likely to affect refractory corrosion, especially lightweight refractories containing lightweight porous aggregates. In this study, the slag corrosion experiments of lightweight corundum-spinel castable were performed in contact with the ordinary and foamed slag respectively and the foamed slag caused more serious corrosion to the lightweight corundum-spinel castable. Based on the corroded microstructure and Marangoni effect, slag corrosion mechanism was analyzed systematically, and could provide the basis for foamed slag resistance.

Keywords

foamed slag lightweight castable permeation corrosion Marangoni effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Nan, L., Huazhi, G., Huizhong Z.: Refractory. M. Beijing: Metallurgical Industry Press (2010) 425–426 (in Chinese)Google Scholar
  2. [2]
    Fu, L., Gu, H., Huang, A., Zhang, M., Hong, X., Jin, L.: Possible improvements of alumina-magnesia castable by lightweight microporous aggregates. J. Ceram. Internat. 41 (2015) [1] 1263–1270CrossRefGoogle Scholar
  3. [3]
    Fu, L., Huang, A., Gu, H., Zhang, M., Lian, P.: Fabrication and characterization of lightweight microporous alumina with guaranteed slag resistance. J. Ceram. Internat. 42 (2016) [7] 8724–8728CrossRefGoogle Scholar
  4. [4]
    Fu, L., Gu, H., Huang, A., Zhang, M., Li, Z.: Slag resistance mechanism of lightweight microporous corundum aggregate. J. Amer. Ceram. Soc. 98 (2015) [2] 1658–1663CrossRefGoogle Scholar
  5. [5]
    Gu, H., Fu, L., Ma, L.: Preparation of microporous corundum aggregates and their applications in lightweight alumina-magnesia castables. Interceram International Ceramic Review (2014)Google Scholar
  6. [6]
    Fu, L., Gu, H., Huang, A., Zhang, M., Li, Z., Ma, L., Du, B.: The preparation of microporous corundum and its effect on the properties of alumina magnesia castable. J. Refractory 48 (2014) [1] 9–12, In ChineseGoogle Scholar
  7. [7]
    Fu, L., Gu, H., Huang, A., Bai, C.: Effect of MgO micropowder on sintering properties and microstructures of microporous corundum aggregates. J. Ceram. Internat. 41 (2015) [4] 5857–5862CrossRefGoogle Scholar
  8. [8]
    Huang, A., Huazhi, G., Yang, Z.: Towards Efficient Modeling on Slag Corrosion of Lightweight Corundum Spinel Castable for Ladle. M. John Wiley & Sons, Inc. (2014)CrossRefGoogle Scholar
  9. [9]
    Cheng, G., Niu, S.: Slag foaming in the metallurgical process. Metal World. 3 (1996) 8–11, In Chinese.Google Scholar
  10. [10]
    Cui, Y., Nan, X.: End of converter slag foaming height control technology. Steelmaking 26 (2010) [1] 70–73, In ChineseGoogle Scholar
  11. [11]
    Jiao, H., Hong, X.: Arc furnace smelting stainless steel slag foaming research. J. of Anhui University of Technology 20 (2003) [1] 84, In ChineseGoogle Scholar
  12. [12]
    Jiao, H., Hong, X.: Smelting stainless steel slag foaming experimental research. Shanghai Metals 26 (2004) [2] 29–31, In ChineseGoogle Scholar
  13. [13]
    Xu, Y., Chen, Z.: Stainless steel electric furnace smelting slag foaming technology discussed in this paper. World Iron & Steel 10 (2010) [5] 12–16, In ChineseGoogle Scholar
  14. [14]
    Zeng, X.: The application of foamed slag technology. Special Steel 15 (1994) [4] 54–57, In ChineseGoogle Scholar
  15. [15]
    Wang, Z., Lu, D.: Slag foaming process and its effect on electric furnace smelting. C. The sixth nationalindustrial furnace academic communication. (2007), In ChineseGoogle Scholar
  16. [16]
    Chen, L., Gu, H.: Electric arc furnace slag foaming foam performance research. Special Steel 14 (1993) [5] 34–38, In ChineseGoogle Scholar
  17. [17]
    Zhang, D., Zou, Z.: LF Refining slag foaming performance prediction model. Special Steel. 24 (2003) [3] 27–29, In ChineseGoogle Scholar
  18. [18]
    Huang, A., Harmuth, H., Doletschek, M., Vollmann, S., Feng, X.: Toward CFD modeling of slag entrainment in gas stirred ladles. Steel Research Internat. 86 (2015) [12] 1447–1454CrossRefGoogle Scholar
  19. [19]
    Huang, A., Gu, H.Z., Wang, N., Zhang, M.: Mathematical and physical modelling of purging plugs and its application for refining ladles. InterCeram-Internat. Ceram. Rev. 2 (2012) 96–102Google Scholar
  20. [20]
    Huang, A., Gu, H.Z., Wang, N.: Water modelling of the blowing effect in ladles with purging plugs of different slit structure and distribution. InterCeram-Internat. Ceram. Rev. 63 (2014) [3] 109–112CrossRefGoogle Scholar
  21. [21]
    Zhu, T.X., Coley, K.S., Irons, G.A.: Progress in slag foaming in metallurgical processes. J. Metallurgical & Materials Transactions B43 (2012) [43] 751–757CrossRefGoogle Scholar
  22. [22]
    Wu, L.S., Albertsson, G.J., Du, S.: Modelling of slag foaming. J. Ironmaking & Steelmaking. 37 (2010) [8] 612–619CrossRefGoogle Scholar
  23. [23]
    Nexhip, C., Sun, S., Jahanshahi, S.: Physicochemical properties of foaming slags. Internat. Mater. Rev. 49 (2004) [5] 286–298CrossRefGoogle Scholar
  24. [24]
    Richardson, F.D.: Interfacial phenomena and metallurgical processes. Canadian Metallurgical Quarterly 2 (1982) 111–119CrossRefGoogle Scholar
  25. [25]
    Scriven, L.E., Sternling, C.V.: The Marangoni effects. Nature. 187 (1960) [4733] 186–188CrossRefGoogle Scholar
  26. [26]
    Jeffes, J.H.E.: Physical Chemistry of Process Metallurgy. M. Institution of Mining and Metallurgy (1974) 719–721Google Scholar
  27. [27]
    Geiger, G.H., Poirier, D.R.: Transport Phenomena in Metallurgy. M. Addison-Wesley Pub.Co (1973)Google Scholar
  28. [28]
    Nan, L., Huazhi, G., Huizhong Z.: Refractory. M. Beijing: Metallurgical Industry Press (2010) 50–60, In ChineseGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2016

Authors and Affiliations

  • Pengfei Lian
    • 1
  • Ao Huang
    • 1
  • Huazhi Gu
    • 1
  • Lvping Fu
    • 1
  • Shuangshuang Wang
    • 1
  1. 1.The state Key Laboratory of Refractories and MetallurgyWuhan University of Science and TechnologyWuhanChina

Personalised recommendations