Advertisement

Interceram - International Ceramic Review

, Volume 65, Issue 4–5, pp 174–178 | Cite as

Preparation of Porous Forsterite Ceramic Using Waste Silica Fumes by the Starch Consolidation Method

  • H. E. H. Sadek
  • R. M. Khattab
  • M. F. Zawrah
High-Performance Ceramics
  • 1 Downloads

Abstract

The fabrication of porous forsterite samples through starch consolidation casting (SCC), utilizing waste silica fume and calcined magnesia has been performed. Three different forsterite contents of solid loading (56.5, 52 and 48 mass-%) were prepared, calculated in a stoichiometric ratio based on utilizing highly pure calcined magnesia and waste silica fume. In addition, corn starch was used as the source of pore forming that was added to the colloidal suspensions then gelatinized in water at elevated temperature (80°C) followed by pressing and firing at 1400, 1450 and 1500°C/2 h). The effect of corn starch content versus the fired temperatures on the physical properties, linear shrinkage, apparent pore size distribution, phase variation, microstuctural evolution and electrical resistivity as well as the cold crushing strength on the fired ceramics was investigated. Results showed that open porosity ranged from 45.5 to 80.5% and compressive strength ranging from 38.1 to 20.2 MPa was obtained depending on starch content in precursor suspensions and firing temperatures, to develop porous forsterite ceramics having varied thermal and electrical applications.

Keywords

ceramics microporous materials waste materials electrical properties mechanical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Shinzou Hayashi, Hiroyuki Suenobu, Hirotake Yamada, Yasushi Noguchi: Ceramic Porous Body And Method for Producing Molded Body. patent No. 20070225149 Sep 27, 2007Google Scholar
  2. [2]
    Ewais, E.M.M., Ahmed, Y.M.Z., Ameen, A.M.M.: Preparation of porous cordierite ceramic using a silica secondary resource (silica fumes) for dust filtration purposes. J. of Ceram. Proc. Res. 10 (2009) [6] 721–728Google Scholar
  3. [3]
    Wahsh, M.M.S., Khattab, R.M., Khalil, N.M., Gouraud, F., Huger, M., Chotard, T.: Fabrication and technological properties of nanoporous spinel/forsterite/zirconia ceramic composites. Mater. and Design 53 (2014) 561–567CrossRefGoogle Scholar
  4. [4]
    Guzman, I.Y.: Certain Principles of Formation of Porous Ceramic Structures. Properties and Applications (A Review). Glass and Ceramics 60 (2003) 280–283CrossRefGoogle Scholar
  5. [5]
    Ulyanova, T.M., Krutko, N.P., Matrunchik, Yu.V., Dyatlova, E.M., Paemurd, E.S., Paemurd, A.: thermostable composite ceramic based on cordierite. Glass and Ceramics 63 (2006) 411–414CrossRefGoogle Scholar
  6. [6]
    Studart, A.R., Gonzenbach, U.T., Tervoort, E., Gauckler, L.J.: Processing Routes to Macroporous Ceramics: A Review. J. of the Amer. Ceram. Soc. 89 (2006) 1771–1789CrossRefGoogle Scholar
  7. [7]
    Khattab, R.M., Wahsh, M.M.S., Khali, N.M.: Preparation and characterization of porous alumina ceramics through starch consolidation casting technique. Ceram. Internat. 38 (2012) 4723–4728CrossRefGoogle Scholar
  8. [8]
    Lim, B.C., Jang, H.M.: Homogeneous fabrication and densification of cordierite zirconia composites by a mixed colloidal processing route. J. of the Amer. Ceram. Soc. 76 (1993) 1482–1490CrossRefGoogle Scholar
  9. [9]
    Martín, M.I., Andreol, F., Barbieri, L., Bondioli, F., Lancellotti, I., Rincón, J.Ma., Romero, M.: Crystallisation and microstructure of nepheline-forsterite glass-ceramics. Ceram. Internat. 39 (2013) 2955–2966CrossRefGoogle Scholar
  10. [10]
    Deer, W.A., Howie, R.A., Zussman, J.: An Introduction to the Rock-Forming Minerals, 2nd ed., Pearson, London (1992)Google Scholar
  11. [11]
    Tavangarian, F., Emadi, R.: Synthesis of nanocrystalline forsterite (Mg2SiO4) powder by combined mechanical activation and thermal treatment. Mater. Res. Bull. 45 (2010) 388–391CrossRefGoogle Scholar
  12. [12]
    Swanson, H.E., Targe, E.: Standard X-ray diffraction powder patterns. National Bureau of Standards(US) Circular 359 (1953) 83–86Google Scholar
  13. [13]
    Tavangarian, F., Emadi, R.: Mechanical activation assisted synthesis of pure nanocrystalline forsterite powder. J. of Alloys and Compounds 485 (2009) 648–652CrossRefGoogle Scholar
  14. [14]
    Martin, M.H.E., Ober, C.K., Hubbard, C.R., Porter, W.D., Cavin, O.B.: Poly(methacrylate) precursors to forsterite. J. of the Amer. Ceram. Soc. 75 (1992) 1831–1838CrossRefGoogle Scholar
  15. [15]
    Ni, S., Chou, L., Chang, J.: Preparation and characterization of forsterite (Mg2SiO4) bioceramics. J. of Ceram. Internat. 33 (2007) 83–88CrossRefGoogle Scholar
  16. [16]
    Mustafa, E., Khalil, N., Gamal, A.: Sintering and microstructure of spinel-forsterite bodies. Ceram. Internat. 28 (2002) 663–667CrossRefGoogle Scholar
  17. [17]
    Sasikala, T.S., Suma, M.-N., Mohanan, P., Pavithran, C., Sebastian, M.T.: Forsterite based ceramic-glass composites for substrate applications in microwave and millimeter wave communications. J. of Alloys and Compounds 461 (2008) 555–559CrossRefGoogle Scholar
  18. [18]
    ACI Committee 226: Silica fume in concrete. ACI Mater. J. 84 (1987) 158–166Google Scholar
  19. [19]
    Pigeon, M., Plante, P., Plante, M.: Air-void stability, part I: influence of silica fume and other parameters. Aci Mater. J. 86 (1989) 482–490Google Scholar
  20. [20]
    Wolsiefer, J.: Ultra High Strength Field Placable Concrete with Silica Fume Admixture. Concrete Internat. Design & Construction 6 (1984) 25–31Google Scholar
  21. [21]
    Zhong, Y., Shaw, L.L., Manjarres, M., Zawrah, M.F.: Synthesis of silicon carbide nanopowder using silica fume. J. of the Amer. Ceram. Soc. 93 (2010) [10] 3159–3167CrossRefGoogle Scholar
  22. [22]
    Suri, J., Shaw, L.L., Zawrah, M.F.: Tailoring the relative Si3N4 and SiC contents in Si3N4/SiC nanopowders through carbothermic reduction and nitridation of silica fume. Internat. J. of Applied Ceram. Technol. 2 (2012) 291–303CrossRefGoogle Scholar
  23. [23]
    Jyothi Suri, Shaw, L.L., Zawrah, M.F.: Synthesis of Carbon-Free Si3N4/SiC Nanopowders using Silica Fume. Ceram. Internat. 37 (2011) 3477–3487CrossRefGoogle Scholar
  24. [24]
    Khattab, R.M., EL-Rafei, A.M., Zawrah, M.F.: In situ formation of sintered cordierite-mullite nano-micro composites by utilizing of waste silica fume. Mater. Res. Bull. 47 (2012) 2662–2667CrossRefGoogle Scholar
  25. [25]
    Bhattacharjee, S., Besra, L., Singh, B.: Effect of additives on the microstructure of porous alumina. J. of the Europ. Ceram. Soc. 27 (2007) 47–52CrossRefGoogle Scholar
  26. [26]
    Laobuthee, A., Wongkasemjit, S., Traversa, E., Laine, R.M.: MgAl2O4 spinel powders from oxide one pot synthesis (OOPS) process for ceramic humidity sensors. J. of the Europ. Ceram. Soc. 20 (2000) 91–97CrossRefGoogle Scholar
  27. [27]
    Hasin, P., Koonsaeng, N., Laobuthee, A.: Nickel-aluminium complex: a simple and effective precursor for nickel aluminate (NiAl2O4) spinel. Maejo Internat., J. of Sci. and Techno. 2 (2008) 140–149Google Scholar
  28. [28]
    Ummartyotin, S., Sangngern, S., Kaewvilai Koonsaeng, N., Manuspiya, H., Laobuthee, A.: Cobalt Aluminate (CoAl2O4) Derived from Co-Al-TEA Complex and Its Dielectric Behaviors. J. of Sustainable Energy and Environment 1 (2009) 31–37Google Scholar
  29. [29]
    Brindley, G.W.: Role of crystal structure in the dehydration reactions of some layer-type minerals. J. of the Mineralo. Soc. of Japan 5 (1961) 217–237Google Scholar
  30. [30]
    Brindley, G.W., Ryozo, H.: Mechanism of formation of Jbrsterite and enstatite from serpentine. Article: Transformations of Serpentine. Mineralogical Magazine 35 (1965) 189–195CrossRefGoogle Scholar
  31. [31]
    Ewais, E.M.M., Ahmed, Y.M.Z., Ameen, A.M.M.: Preparation of porous cordierite ceramic using a silica secondary resource (silica fumes) for dust filtration purposes. J. of Ceram. Proc. Res. 10 (2009) [6] 721–728Google Scholar
  32. [32]
    Maisarah Mohamed Bazin, Muhd Amirudin Ahmat, Nurhanna Zaidan, Ahmad Fauzi Ismail, Norhayati Ahmad: Effect of Starch Addition on Microstructure and Strength of Ball Clay Membrane. J. Teknologi 69 (2014) [9] 117–120Google Scholar
  33. [33]
    Chandradass, J., Ki Hyeon Kim, Dongsik Bae, Prasad, K., Balachandar, G., Athisaya Divya, S., Balasubramanian, M.: Starch consolidation of alumina: Fabrication and mechanical properties. J. of the Europ. Ceram. Soc. 29 (2009) 2219–2224CrossRefGoogle Scholar
  34. [34]
    Shiratori, Y., Tietz, F., Penkalla, H.J., He, J.Q., Shiratori, Y., Stöver, D.: Influence of impurities on the conductivity of composites in the system (3YSZ)1−x−(MgO)x. J. of Power Sources 148 (2005) 32–42CrossRefGoogle Scholar
  35. [35]
    Badwal, S.P.S., Rajendran, S.: Effect of micro- and nano-structures on the properties of ionic conductors. Solid State Ionics 70(71) (1994) 83–95CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2016

Authors and Affiliations

  • H. E. H. Sadek
    • 1
  • R. M. Khattab
    • 1
  • M. F. Zawrah
  1. 1.Refractories, Ceramics and Building MaterialsNational Research CentreGizaEgypt

Personalised recommendations