Advertisement

Assessment of Ceramic Properties of Fired Clayey Brick Materials from Bamessing in North-West Cameroon (Central Africa)

  • S. Tchounang Kouonang
  • A. S. L. Wouatong
  • J. G. Deutou Nemaleu
  • K. P. B. Yerima
  • D. Njopwouo
Raw Materials Worldwide
  • 2 Downloads

Abstract

Two clayey raw materials from Bamessing (Cameroon) were used to prepare handmade brick samples which were fired under oxidizing conditions (900–1100°C) to evaluate their possible use in the brick-making industry. The T1 sample is clay-silty-sand and is more plastic than the T2 sample which has a sandy-clay-silty texture. Prepared raw material samples (T3) are rich In the order quartz > illite > kaolinite. After firing, the samples acquired a red-yellow colour and underwent significant mineralogical and textural changes. Break down of phyllosilicates is accompanied by the crystallization of haematite, metakaolinite, spinel-phase minerals, mullite and anorthite. As firing temperature increased, fissures or micro-cracks became smaller and the matrix became vitrified. Linear firing shrinkage increased gradually (7.1–17.3%) with firing temperature (950–1050°C). Water absorption by bricks varied from 21.98 to 30.01 mass-%. Fissures or micro-cracks and water absorption by bricks decreased with increased firing temperature and strength.

Keywords

raw materials fired ceramics petrophysical properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Vallerie, M.: Contribution à l’étude des sols du Centre-Sud Cameroun. Types de différenciation morphologique et pédogénétique sous climat subéquatorial. Travaux et Documents ORSTOM 29 (1973) 15Google Scholar
  2. [2]
    Tchounang, S.K.: Prospection et caractérisation des matériaux argileux de Bamessing. (Thèse de Master’s), Université de. Dschang, Cameroun. (2006) 76Google Scholar
  3. [3]
    Ngon, F.G.: Etude morphologique, minéralogique, géochimique et cristallographique des argiles latéritiques et argiles hydromorphes de la région de Yaoundé (Cameroun). (Thèse Doctorat/Ph.D). Université de Yaoundé I, Cameroun. (2007) 200Google Scholar
  4. [4]
    Wouatong, L.S.A., Tchounang Kouonang, S., Hawa, M., Yerima, B.P.K., Melo Chinje, U., Njopwouo, D.: Chemical and Mineralogical Characterization of Clayey Deposits for Traditional Pottery and Brickworks in the North West Region of Cameroon (Central Africa). British Journal of Applied Science & Technology 9 (2015) [1] 19–36CrossRefGoogle Scholar
  5. [5]
    Njopwouo, D.: Minéralogie et physico-chimie des argiles de Bomkoul et de Balengou. (Cameroun). Utilisation dans la polymérisation du styrène et dans le renforcement du caoutchouc naturel. (Thèse Doctorat d’Etat). Université de. Yaoundé, Cameroun (1984) 300Google Scholar
  6. [6]
    Caillère, S., Henin, S., Rautureau, M.: Les argiles. Ed SEPTIMa, Paris (1989) 126Google Scholar
  7. [7]
    Chang, Y.L.L.: Industrial mineralogy: Materials, Processes and Uses. Prentice Hall, Upper Saddle River, New Jersey (2002) 195Google Scholar
  8. [8]
    Thibaut, P.P., Le Berre, P.: Recherche d’argiles pour briques dans la région de Yaoundé, Douala et Edéa. Rapport 85 CM065 (1985)Google Scholar
  9. [9]
    Grim, R.: Some applications of clay mineralogy. Amer. Mineral 45 (1960) 259–269Google Scholar
  10. [10]
    Meseguer, S., Jordan, M.M., Sanfeliu, T.: Use of mine soils from Teruel coal mining district. Environmental Geology 56 (2009) 845–853CrossRefGoogle Scholar
  11. [11]
    Sanfeliu, T., Jordan, M.M.: Geological and environmental management of ceramic clay quarries: a review. Environmental Geology 57 (2009) 1613–1618CrossRefGoogle Scholar
  12. [12]
    Gonzalez-Garcia, F., Romero-Acosta, V., Garcia Ramos, G., Gonzalez Rodrigez, M.: Firing transformation of mixtures of clays containing illite, kaolinite and calcium carbonate used by ornamental tile industries. Applied Clay Science 5 (1990) 361–375CrossRefGoogle Scholar
  13. [13]
    Jordan, M.M., Boix, A., Sanfeliu, T., De la Fuente, C.: Firing transformations of Cretaceous clays used in the manufacturing of ceramic tiles. Applied Clay Science 14 (1999) 225–234CrossRefGoogle Scholar
  14. [14]
    Jordán, M.M., Sanfeliu, T., De la Fuente, C.: Firing transformations of Tertiary clays used in the manufacturing of ceramic tile bodies. Applied Clay Science 20 (2001) 87–95CrossRefGoogle Scholar
  15. [15]
    Maggeti, M.: Phase analysis and its significance for technology and origin. In: Olin, J.S. (Ed.), Archaeological Ceramics. Smithsonian Institution Press (1982) 121–133Google Scholar
  16. [16]
    Moropoulou, A., Bakolas, A., Bisbikou, K.: Thermal analysis as a method of characterizing ancient ceramic technologies. Thermochimica Acta 2570 (1995) 743–753.CrossRefGoogle Scholar
  17. [17]
    Boccaccini, A.R.: Comment on dependence of ceramic fracture properties on porosity. J. of Mater. Lett. 13 (1994) 1035–1037Google Scholar
  18. [18]
    Zweben, C.: Ceramic matrix composites — mechanical properties and test methods. Ceramic Engineering and Science Proceedings 12 (1991) [1–2] 409–503Google Scholar
  19. [19]
    Freyburg, S., Schwarz, A.: Influence of the clay type on the pore structure of structural ceramics. J. Europ. Ceram. Soc. 27 (2006) [2–3] 1727–1733Google Scholar
  20. [20]
    Küntz, M., Lavellée, P.: Experimental evidence and theoretical analysis of anomalous diffusion during water infiltration in porous building materials. J. of physics. D. Applied Physics 34 (2001) [16] 2547–2554CrossRefGoogle Scholar
  21. [21]
    Lockington, D.A., Parlange, J.Y.: Anomalous water absorption in porous materials. J. of physics. D. applied Physics 36 (2003) 760–767CrossRefGoogle Scholar
  22. [22]
    Kamseu, E., Leonelli, C., Boccaccini, D.N., Veronesi, P., Pellacani, M.G.U.C.: Characterization of porcelain composition using two china clays from Cameroon. Ceram. Internat. 33 (2007) 851–857CrossRefGoogle Scholar
  23. [23]
    ASTM D-422-63: (ASTM — America Society for Testing Materials) “Standard Test Method for Particle-Size Analysis of Soils.” (1998)Google Scholar
  24. [24]
    ASTM D 4318-10: Standard test methods for liquid limit, plastic limit and plasticity index of soils. ASTM International Standards Worldwide, Pennsylvania (2010)Google Scholar
  25. [25]
    Marc, P., Jacques, G.: L’analyse du sol minéralogique, organique et minérale, Springer-Verlag. France (2003) 243Google Scholar
  26. [26]
    Moore, M., Duane, Jr., Reynolds, Robert, C.: X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, Oxford (1989) 332Google Scholar
  27. [27]
    Mbumbia, L., Mertens, A., de Wilmars, Tirlocq, J.: Performance characteristics of lateritic soil bricks fired at low temperatures: a case study of Cameroon. Construction and Building Mater. 14 (2000) 121–131CrossRefGoogle Scholar
  28. [28]
    ASTM C126-14: Standard Specification for Ceramic Glazed Structural Clay Facing Tile, Facing Brick, and Solid Masonry Units, ASTM International, West Conshohocken, PA, (2014). www.astm.org
  29. [29]
    Cases, J.M., Lietard, O., Yvon, J., Delon, J.F.: Etude des propriétés cristallochimiques, morphologiques, superficielles de kaolinites désordonnées. Bull. Mineral. 105 (1982) 439–455Google Scholar
  30. [30]
    Holtzapffel, T.: Les minéraux argileux: préparation, analyse diffractométrique et détermination. Société Géologique du Nord, Publication (12), Villeneuve d’ASCQ, France (1985) 136Google Scholar
  31. [31]
    Rollet, A.P., Bouaziz, R.: L’analyse thermique. Tome 2, Gauthier-Villars Editeur, Paris (1972) 227 L’analyse thermique. Tome 2, Gauthier-Villars Editeur, Paris (1972) 227Google Scholar
  32. [32]
    Lecomte; G.N.N.K.: Transformation thermiques, organisation structurales et filtrage des composés kaolinite-muscovite. (Thèse Doctorat) Université de. Limoges, Frances. (2004) 198Google Scholar
  33. [33]
    Todor, N.D.: Thermal Analysis of Minerals. Abacus Press, Kent, England (1976) 256Google Scholar
  34. [34]
    Sigg, J.: Les produits de terre cuites. Septina, Paris, (1991) 423Google Scholar
  35. [35]
    Carty, M., Senaparti, U.: Porcelain-raw materials, processing, phase evolution, and mechanical behavior. J. Amer. Ceram. Soc. 81 (1998) [1] 3–20CrossRefGoogle Scholar
  36. [36]
    Tsuzuki, Y., Nagasawa, K.: Transitional stage to the 980°C exotherm of kaolin minerals. Clay Sci. of Japan Soc. 3 (1969) 87–102Google Scholar
  37. [37]
    Lemaitre, J., Leonard, A.J., Delmon, B.: The sequence of phases in 900–1050°C, transformation of metakaolinite. Proc. Internat. Clay Conf. 60 (1977) [1–2] 37–43Google Scholar
  38. [38]
    Olivier, C.: Influence de la vitesse du traitement thermique sur le comportement d’un kaolin: application au frittage rapide. (Thèse), Université de Limoges (2000) 139Google Scholar
  39. [39]
    Murad, E., Wagner, U.: The thermal behaviour of an Fe-rich illite. Clay Miner. 31 (1996) 45–52CrossRefGoogle Scholar
  40. [40]
    Caillère, S., Henin, S., Rautureau, M.: Minéralogie des argiles. I. Structure et propriétes physico-chimiques. Ed. Masson, Paris (1982) 70–80Google Scholar
  41. [41]
    Vedder, W.: Correlations between infrared spectrum and chemical composition of mica. Amer. Mineral. 49 (1964) 736–768Google Scholar
  42. [42]
    Kristof, J., Mink, J., Horvath, E., Gabor, M.: Intercalation study of clay minerals by Fourier transformation infrared spectrometry. Vib. Spectrosc. 5 (1993) 61–67CrossRefGoogle Scholar
  43. [43]
    Madejova, J., Komadel, P., Cicel, B.: Infrared spectra of some Czech and Slovak smectites and their correlation with structural formulas. Geol. Carpathica-Series Clays, 1: Bratislava (Czechoslovakia) 1 (1992) 9–12Google Scholar
  44. [44]
    Srasra, E., Bergaya, F., Fripiat, J.J.: Infrared spectroscopy study of tetrahedral and octahedral substitutions in an interstratified illite — smectite clay. Clays and Clay Mineral 42 (1994) [3] 237–241CrossRefGoogle Scholar
  45. [45]
    Yvon, J., Lietard, O., Case, J.M.: Minéralogie des argiles kaolinitiques des charentes. Bull. Minéral. 105 (1982) 431–437Google Scholar
  46. [46]
    Shepard, F.P.: Nomenclature based on sand-silt-clay ratios. J. Sediment. Petrol. 24 (1954) 151–158CrossRefGoogle Scholar
  47. [47]
    Winkler, H.G.F.: Bedeutung der Korngrössenverteilung und des Mineralbestandes von Zonen für die Herstellung grobkeramischer Erzeugnisse. Ber. Dtsch. Keram. Ges. 31 (1954) 337–343Google Scholar
  48. [48]
    Bain, J.A., Highley, D.E.: Proc. Internat. Clay Conf. AIPEA, Oxford (1966)Google Scholar
  49. [49]
    Bain, J.A., Highley, D.E.: Regional appraisal of clay resources. A challenge to the clay mineralogist. Proceedings of the VI International Clay Conference 1978, under the Auspices of AIPEA, Oxford. Developments in Sedimentology 27 (1979) 437–446CrossRefGoogle Scholar
  50. [50]
    Mitchell, J.K., Soga, K.: Fundamentals of soil behavior, 3rd ed. John Wiley & Sons, Inc., Hoboken, New Jersey (2005) 577Google Scholar
  51. [51]
    Eze, E.O., and Onabanjo: Heating effects on physical and strength characteristics of fireclay from the Nigerian Coal Measures Formation. Applied Clay Sci. 9 (1995) 397–406CrossRefGoogle Scholar
  52. [52]
    Dondi, M., Fabbri, B., Guarini, G.: Grain-Size Distribution of Italian Raw Materials for Building Clay Products: A Reappraisal of the Winkler Diagram. Clay Minerals 33 (1998) 435–442CrossRefGoogle Scholar
  53. [53]
    Manning, D.A.C.: Introduction to Industrial Minerals. Chapman & Hall, London (1995). doi:  10.1007/978-94-011-1242-0CrossRefGoogle Scholar
  54. [54]
    Melo, C.U., Kamseu, E., Djangang, C.: Effect of Fluxes on the Fired Properties between 950–1050°C of Some Cameroonian Clays. Tiles & Bricks Internat. 19 (2003) [6] 57–69Google Scholar
  55. [55]
    Correia, S.L., Hotza, D., Segadães, A.M.: Simultaneous Optimization of Linear Firing Shrinkage and Water Absorption of Triaxial Ceramic Bodies Using Experiments Design. Ceram. Internat. 30 (2004) 917–922CrossRefGoogle Scholar
  56. [56]
    Redouane, M., Assifaoui, A., Sarhiri, A., Gomina, M.: White pastes designed from Moroccan raw-materials for ceramic tiles fabrication. Key Eng. Mater. 206–213 (2002) 1835–1838Google Scholar
  57. [57]
    Jordán, M.M., Montero, M.A., Meseguer, S., Sanfeliu, T.: Influence of firing temperature and mineralogical composition on bending strength and porosity of ceramic tile bodies. Applied Clay Science 42 (2008) 266–271CrossRefGoogle Scholar
  58. [58]
    Wagh, A.S., Singh, P., Poeppel, R.B.: Dependence of ceramic fracture properties on porosity. J. Mater. Sci. 28 (1993) 3589–3593CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2016

Authors and Affiliations

  • S. Tchounang Kouonang
    • 1
    • 2
  • A. S. L. Wouatong
    • 1
  • J. G. Deutou Nemaleu
    • 2
  • K. P. B. Yerima
    • 3
  • D. Njopwouo
    • 4
  1. 1.Department of Earth Sciences, Faculty of ScienceUniversity of DschangDschangCameroon
  2. 2.Local Materials Promotion Authority (MIPROMALO)Ministry of Scientific Research and Innovation, YaoundeYaoundeCameroon
  3. 3.Department of Soil Sciences, Faculty of Agronomy and Agricultural SciencesUniversity of DschangDschangCameroon
  4. 4.Department of Inorganic Chemistry, Faculty of ScienceUniversity of Yaounde IYaoundeCameroon

Personalised recommendations