Advertisement

Characterization and Bioactivity in High Cristobalite-Nepheline-Apatite Glass and Glass Ceramics

  • E. M. A. Hamzawy
  • O. A. Alharbi
  • D. Y. Zaki
High-Performance Ceramics
  • 2 Downloads

Abstract

Within the Na2O-CaO-Al2O3-SiO2-P2O5-F system, in the nominal binary nepheline-fluorapatite phases were prepared and investigated. Transparent glasses were obtained in a high nominal ratio of nepheline, i.e. 75, 80, 85 and 90%, whereas the low ones, i.e. 25, 50 and 70% gave devitrified glasses. The thermal behaviour of the glasses and both the crystalline phases and the microstructure of the glass ceramic were investigated. Moreover, the bioactivity of glasses and glass ceramics was also examined. Nepheline, fluorapatite and high cristobalite were the main crystalline phases developed through the heat-treatment process of the glass powders in the 800–1250°C temperature range. High cristobalite and nepheline were developed as the main phases that were treated either at high or low temperature. The microstructure shows spread crystals and flake-like crystals embedded in a glassy matrix. In vitro, the bioactivity testing of the glasses and the corresponding glass-ceramic, sintered at 900°C, showed that the sample containing 75% nominal nepheline was the best regarding in the bioactivity behaviour.

Keywords

silicate glasses glass ceramics bioactivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Höland, W., Beall, G.H.: Glass-Ceramic Technology. The American Ceramic Society, Westerville, OH (2002)Google Scholar
  2. [2]
    Mac Dowell, J.F.: Microwave heating of nepheline glass ceramics. J. Am. Ceram. Soc. 58 (1975) 258–259CrossRefGoogle Scholar
  3. [3]
    Wang, M.C., Wu, N.C., Hon, M.H.: Preparation of nepheline glass ceramics and their application as dental porcelain. Mater. Chem. Phys. 37 (1994) 370–375CrossRefGoogle Scholar
  4. [4]
    Hamzawy, E.M.A., El-Meliegy, E.M.: Preparation of nepheline glass ceramics for dental applications. Mater. Chem. Phys. 112 (2008) 432–435CrossRefGoogle Scholar
  5. [5]
    Hamzawy, E.M.A., El-Meliegy, E.M.: Crystallization in the Na2O-CaO-Al2O3-SiO2-(LiF) glass compositions. Ceram. Int. 33 (2007) 227–231CrossRefGoogle Scholar
  6. [6]
    Hamzawy, E.M.A., Leonelli, C.: Crystallization and substitutions of Fluor-Mg-rich-terite (Li, Na, K)2 Mg6Si8 O22 F2 glasses. European J. Glass Sci. and Technol., Part A 48 (2007) 316–321Google Scholar
  7. [7]
    Kivlighn, H.D.J.R., Russak, M.A.: Formation of nepheline glass ceramics using Nb2O5 as a nucleation catalyst. J. of the Am. Ceram. Soc. 57 (1974) [9] 382–385CrossRefGoogle Scholar
  8. [8]
    Megles J.E.: Nepheline-feldspar glass ceramics. US 3653865 A, (1970)Google Scholar
  9. [9]
    Das, S.K., Dwivedi, R.N., Thiagarajan, S., Thakur, R.L.: Nucleation and crystallisation of some Na2O-Al2O3-SiO2 and Na2O-BaO-Al2O3-SiO2 glasses J. Non Cryst. Solids 38–39 (1980) 729–734CrossRefGoogle Scholar
  10. [10]
    Moisescu, C., Jana, C., Rüssel, C.: Crystallization of rod-shaped fluoroapatite from glass melts in the system SiO2-Al2O3-CaO-P2O5-Na2O-K2O-F-. J. Non-Cryst. Solids 248 (1999) 169–175CrossRefGoogle Scholar
  11. [11]
    Hench, L.: Chronology of bioactive glass development and clinical applications. New J. Glass and Ceram. 3 (2013) 67–73CrossRefGoogle Scholar
  12. [12]
    Clark, A.E., Hench, L.L.: The influence of surface chemistry on implant interface histology: A theoretical basis for implant materials selection. J. Biomed. Mater. Res. 10 (1976) 161–174CrossRefGoogle Scholar
  13. [13]
    Hollander, M., Wolfe, D.A.: Nonparametric statistical methods.: John Wiley & Sons, Inc., New York (1973), ISBN-13: 9780471406358Google Scholar
  14. [14]
    JCPDS-International Center for diffraction Data ICDD, PDF-2 Data Base (Sets 1–51 plus 70–89), 2001Google Scholar
  15. [15]
    Buerger, M.J.: The stuffed derivatives of silica matrix. Am. Miner. 39 (1954) 600–614Google Scholar
  16. [16]
    Saltzberg, M.A., Bors, S.L., Bergna, H., Winchester, S.C.: Synthesis of chemically stabilized cristobalite. J. Am. Ceram. Soc. 75 (1992) 89–95CrossRefGoogle Scholar
  17. [17]
    Lee, S.J., Lee, C.H.: Critical size effect for chemically doped α-cristobalite transformation. Mat.. Lett. 45 (2000) 175–179CrossRefGoogle Scholar
  18. [18]
    Thomas, E.S., Thompson, J.T., Withers, R.L.: Further investigation of the stabilization of α-cristobalite. J. Am. Ceram. Soc. 77 (1994) 49–56CrossRefGoogle Scholar
  19. [19]
    Perrotta, A.J., Grubbs, D.K., Martin, E.S., Dando, N.R., McKinstry, H.A., Huang, C.Y.: Chemical stabilization of α-cristobalite J. Am. Ceram. Soc. 72 (1989) 441–447CrossRefGoogle Scholar
  20. [20]
    Xu, Y.N., Ching, W.Y.: Electronic and optical properties of all polymorphic forms of silicon dioxide. Phys. Rev. B. 44 (1991) 11048–11059CrossRefGoogle Scholar
  21. [21]
    Alharbi, O.A., Zaki, D.Y., Hamzawy, E.M.A.: Crystallization control of cristobalite and tridymite in sintered glass ceramics. Silicon 4 (2012) 281–287CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2016

Authors and Affiliations

  • E. M. A. Hamzawy
    • 1
  • O. A. Alharbi
    • 2
  • D. Y. Zaki
    • 3
  1. 1.Glass Research DepartmentNational Research CenterDokki, CairoEgypt
  2. 2.King Abdulaziz City for Science and TechnologyRiyadhSaudi Arabia
  3. 3.Restorative and Dental Materials Research DepartmentNational Research CenterDokki, CairoEgypt

Personalised recommendations