Interceram - International Ceramic Review

, Volume 64, Issue 4–5, pp 174–176 | Cite as

Estimation of Thermal Expansion of Silica Refractory Based on its Mineralogy

  • G. GoswamiEmail author
  • P. Sanu
  • P. K. Panigrahy
Refractories Forum


The paper examines the possibility of estimation of Thermal Expansion (TE) of silica refractory up to 1000°C, based on its mineral contents, particularly SiO2 polymorphs. For that purpose a very accurate quantitative X-ray diffractometric (QXRD) method for estimation of quartz, cristobalite, and tridymite and an optical method for Si glass were standardized in the authors’ laboratory. The total TE caused by these Si polymorphs up to 1000°C was found to be almost equal to that estimated by the conventional dilatometric method showing differences in the third decimal place only. The method is much quicker than the dilatometric method.


thermal expansion silica refractories quantitative X-ray diffractometry SiO2 polymorphs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Fuwa, K., Ito, S.: Comparative studies on silica bricks. Am. Ceram. Soc. Abstract. 32 (1949) [11] 257Google Scholar
  2. [2]
    Kraner, H.M.: Quality of silica bricks. Am. Ceram. Soc. Abstract 35 (1952) [11] 207Google Scholar
  3. [3]
    Ehrck, U., Schwiete, H.: In Archiv für das Eisenhüttenwesen 34 (1963) [10] 795–811CrossRefGoogle Scholar
  4. [4]
    Konopicky, K., Leers, K.J., Routschka, G., Thoener, H.W.: In Tonindustrie Zeitung 9 (1968) [2] 41–50Google Scholar
  5. [5]
    Majdic, A., Hagemann, L., Maercker, G., Overkott, E., Suckow, A.: Thermal expansion of silica bricks for coke oven construction. Keram Z. 34 (1982) [2] 89–92Google Scholar
  6. [6]
    Nayak, B., Goswami, G., Panda, J.D.: Differences in thermal behaviour of silica bricks of identical specific gravity. Interceram (1985) [4] 23–25Google Scholar
  7. [7]
    Schneider, H., Flörke, O.W., Majdic, A.: Thermal expansion of tridymite. Proc. of the Brit. Ceram. Soc. (Basic Science Section, Mineralogy of Ceramics) 28 (1979) 267–279Google Scholar
  8. [8]
    Panda, J.D., Goswami, G.: Thermal expansion of silica refractories with respect to different SiO2 polymorphs. Proc. UNITECR 1991, Aachen (Germany) 353–357Google Scholar
  9. [9]
    Sahu, P., Panda, J.D., Panigrahy, P.K., Panda, S.K.: Effect of tridymite on the reversible thermal expansion of silica bricks. Proc. UNITECR 2001, Mexico 967–974Google Scholar
  10. [10]
    Panda, B.K., Sahu, P., Jha, R.K., Tiwari, J.N.: Thermal behaviour of coke oven silica bricks with respect to mineralogy. Proc. UNITECR 2009, Salvador (Brazil) 704–708Google Scholar
  11. [11]
    Goswami, G.: Quick estimation of thermal expansion of silica refractories by X-ray diffractometry. IRMA Journal 47 (2014) [3] 81–84Google Scholar
  12. [12]
    Majdic, A., Schneider, H., Wohlleben, K.: X-ray diffractometric determination of residual quartz in silica bricks. Cfi/Ber. DKG (1986) [4–5] 176–189Google Scholar
  13. [13]
    Goswami, G., Panda, J.D., Panigrahy, P.K.: Accurate determination of SiO2 polymorphs in silica refractories by X-ray diffractometry. Proc. UNITECR 1997, New Orleans (USA) 1549–1558Google Scholar
  14. [14]
    Goswami, G., Panda, J.D.: X-ray diffractometric determination of tridymite in silica refractories. Interceram 49 (2000) [5] 300–307Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2015

Authors and Affiliations

  1. 1.Dalmia Institute of Scientific & Industrial ResearchRajgnagpurIndia

Personalised recommendations