Advertisement

Interceram - International Ceramic Review

, Volume 64, Issue 3, pp 112–115 | Cite as

In-Situ Synthesis of (O′+β)-Sialon/Mullite Composite Materials from Coal Gangue

  • H. Wang
  • J. Chen
  • Y. G. Liu
  • Z. H. Huang
  • M. H. Fang
Special Technologies

Abstract

(O′+β)-sialon/mullite composite materials were synthesized by an in-situ carbothermal reduction nitridation method, with coal gangue and carbon black as raw materials. The influences of temperature and carbon content on the phase composition and microstructure of the pre-synthesized materials were investigated by XRD and SEM. The effects of variation in the phase composition, the microstructure on the bulk density, the bending strength of the pre-synthesized materials were investigated in detail. The results indicated that increasing temperature and carbon content benefit the generation of O′-sialon and β-sialon. The (O′+β)-sialon/mullite composite material can be synthesized at 1400°C (6 h) ∼ 1500°C (6 h). The generative process including the formation of β-sialon, O′-sialon and the conversion process from β-sialon to O′-sialon. The O′-sialon and β-sialon in the synthesized materials have needle-like and pillar structures, respectively. Given all that, the (O′+β)-sialon/mullite composite material prepared by coal gangue and carbon black contributes to solving the problem of the recycling of coal gangue, and high-performance composite materials can be obtained.

Keywords

coal gangue sialon mullite composite carbothermal reduction nitridation process 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Dong, P.L., Wang, H.J., Wang, X.D., Zhang, M.: Preparation and Characterization of β-Sialon Composite by Reduction-Nitridation from Coal Gangue. J. Chinese Rare Earth Soc. 10 (2006) 24Google Scholar
  2. [2]
    Xu, X.W., Liang, H., Li, X.L.: In-situ Synthesis and phase analysis of low density O′-Sialon-based multiphase ceramics. Rare Metal. 29 (2010) [2] 214–219CrossRefGoogle Scholar
  3. [3]
    Pradeilles N., Record M C., Granier D.: Synthesis of β-Sialon: A combined method using sol-gel and SHS processes. Ceram. Inter. 34 (2008) [5] 1189–1194CrossRefGoogle Scholar
  4. [4]
    Ma, B.Y., Li, Y., Xu, L.B., Zhai, Y.C.: In-situ Synthesis of (O′+β)-Sialon/Mulite Composite Materials. J. Northeastern University 1 (2011) 32Google Scholar
  5. [5]
    Han, B.Q., Li, N.: Preparation of β-SiC/Al2O3 composite from kaolinite gangue by carbonthermal reduction. Ceram. Inter. 31 (2005) 227CrossRefGoogle Scholar
  6. [6]
    Zhang, H.J.: Preparation and pattern recognition of O-sialon by reduction-nitridation from coal gangue. J. Mater. Sci. A 385 (2004) 325CrossRefGoogle Scholar
  7. [7]
    Luo, X.Y., Sun, J.L., Deng, C.J., Hong, Y.R.: Synthesis of β-Sialon from coal gangue. J. Mater. Sci. Technol. 19 (2003) [1] 93Google Scholar
  8. [8]
    Chen, J., Chen, K., Fang, M.H., Liu, Y.G., Huang, Z.H.: Preparation and properties of non-nitriding-sintering SiC-Si3N4-corundum composite refractories. Interceram — Refract. Manual 2 (2012) 126Google Scholar
  9. [9]
    Chen, J., Chen, K., Liu, Y.G., Huang, Z.H., Fang, M.H., Huang, J.D.: Effects of Al2O3 addition on properties of non-sintered SiC-Si3N4 composite refractory materials. IInt. J. Refract. Metals and Hard Mater. 46 (2014) 6–11CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2015

Authors and Affiliations

  • H. Wang
    • 1
  • J. Chen
    • 1
  • Y. G. Liu
    • 1
  • Z. H. Huang
    • 1
  • M. H. Fang
    • 1
  1. 1.School of Materials Science and TechnologyChina University of GeosciencesBeijingChina

Personalised recommendations